next up previous
Next: Conclusions Up: Performance of Plateau de Previous: Effect of Wind

Seeing

Anomalous refraction was first observed with the 30-m telescope (Altenhoff et al. [1987]). It was observed to occasionally move the source images by a large fraction of the beam width. It is well recognized that it is due to the same random fluctuations of the atmospheric water content, constantly observed by millimeter interferometers, which would limit the angular resolution of our synthesis maps to about one arc second on average nights, without the help of the radiometric phase correction. In that case the term `seeing' seems more appropriate, in relation with optical astronomy. These random fluctuations persist on the scale of a single dish; a linear variation in the water content across the telescope aperture causes a linear phase gradient and thus a deviation of the beam.

The atmospheric rms phase fluctuation tex2html_wrap_inline1040 in an interferometric observation is generally related to the baseline length b by a relation of the form tex2html_wrap_inline1044 (Olmi and Downes [1992]). The power law exponent tex2html_wrap_inline1046 is in the range 0.4-0.8. If one extrapolates this relation to scales smaller than the antenna size, one may predict the amplitude of the random pointing deviations (seeing) caused by these phase fluctuations:

displaymath1050

This formula should actually only be valid for azimuth deviations; for elevation a more appropriate formula at elevation tex2html_wrap_inline1052 should be

displaymath1054

since the antenna beam intercepts an ellipse of axes D and tex2html_wrap_inline1058 in each layer of the atmosphere.

For the above pointing data the information on phase fluctuations is available on six baselines in the range 24 to 64 m. I have assumed an index tex2html_wrap_inline1060 and extrapolated the phase data down to 15-m scale to compute the seeing parameters tex2html_wrap_inline1062 and tex2html_wrap_inline1064 . The observed pointing errors are plotted as a function of these parameters in Fig. 7. The pointing errors averaged on all antennas are also shown in Fig. 8.

It is clear that the observed pointing errors are well correlated with atmospheric seeing; however, as can be shown by averaging the data of the three points with highest fluctuations, the above method must be overestimating the seeing by about tex2html_wrap_inline1066 . This is most probably due to different sampling times in the pointing measurements and the phase measurements. The individual pointing scans were separated by longer time intervals than the typical integration time of phase measurements (actually estimated from the pointing scans themselves). One should ideally do more frequent pointing scans, and interrupt them from time to time to perform longer on-source integrations, suitable to sample the temporal structure function of the phase fluctuations. The seeing parameter could have also been overestimated if the exponent tex2html_wrap_inline1046 was systematically higher for scales lower than 24m.

On the other hand, the points with lowest fluctuations in Fig. 8 do lie above the straight line; this could be due to overestimation of the pointing error r.m.s. (at this level the measurement error may contribute to the statistics). However measured tracking errors are in the 0.2-0.5'' range and must contribute to the observed r.m.s.

In a recent memo Holdaway ([1997]) computed the expected pointing degradation due to seeing on the Chajnantor site. He found that r.m.s. deviations of 0.5'' should be expected about half of the time.

   figure380
Figure 7: Correlation of observed pointing errors with the seeing parameter. The big squares are the observed pointing r.m.s. deviations in arc seconds; the small squares indicate the measurement r.m.s. errors. The curved lines represents tex2html_wrap_inline802 where s is the seeing parameter

   figure387
Figure: Correlation of observed pointing errors with the seeing parameter: same as Fig. 7, for the average of the four available antennas


next up previous
Next: Conclusions Up: Performance of Plateau de Previous: Effect of Wind