
NRAO 225 GHz Tipping Radiometer

Computer Operation

Scott M. Foster

National Radio Astronomy Observatory

949 N. Cherry Ave.

Tucson, AZ 85721-0655

email: sfoster@nrao.edu

September 24, 1996

Contents

1 WARNING 4

2 Introduction 4

3 Hardware Con�guration 4
3.1 Chajnantor, Chile, Hardware Con�guration 5

3.1.1 The ASD-4 (Automatic Sharing Device) 6
3.1.2 The TOPS+ (Tone Operated Power Switch) 7
3.1.3 The Timer and Delay Box 8
3.1.4 The LAN (Local Area Network) 9
3.1.5 Chajnantor Computer Hardware 9

3.2 Mauna Kea, Hawaii, Hardware Con�guration 10
3.2.1 Mauna Kea Computer Hardware 10

3.3 Receiving Computer Hardware Con�guration 10

4 Radiometer Computer Software 11

4.1 A few notes on MS-DOS (Micro Soft Disk Operating System)
File Extensions . 12

4.2 CTIP (Charlottesville TIPper) 12
4.2.1 CTIP96 . 13
4.2.2 CTIP96C . 17

1

4.3 CTIP.BAT and Pkzip . 17
4.4 Chajnantor Communications Software 18

4.4.1 Procomm . 19
4.4.2 Close-up . 22
4.4.3 Little Big LAN . 22

4.5 Mauna Kea Communications Software 22
4.6 The Radiometer Computer Setup 23

4.6.1 CONFIG.SYS . 23
4.6.2 AUTOEXEC.BAT . 24
4.6.3 Microsoft Windows . 26

5 Setting Up a New System 26

6 Tucson Software 27

6.1 Cron . 28
6.2 The Tipper Directory . 29
6.3 Daily Shell Scripts . 30

6.3.1 Cdata.csh . 31
6.3.2 Cplots.csh . 44
6.3.3 MKdata.csh . 44
6.3.4 MKwdata.csh . 45
6.3.5 MKplots.csh . 45
6.3.6 met.csh . 45
6.3.7 monitor.csh . 46
6.3.8 localbackup.csh . 46
6.3.9 MKweather.csh . 48

6.4 Weekly Shell Scripts . 48
6.5 Monthly Shell Scripts . 49
6.6 Incidental Shell Scripts . 50

6.6.1 tauplot.csh, monplot.csh, txtplot.csh, wndplot.csh, and
wdrplot.csh . 50

6.6.2 hist.csh . 51
6.6.3 time.csh . 51
6.6.4 Cdb.csh . 52

6.7 World Wide Web Shell Scripts 52
6.8 Procedures . 52

A Satellite Telephone Dialing Instructions 54

2

B Opacity Measurement 56

B.1 Measurements . 56
B.2 Solving for the Opacity . 57

B.2.1 Gain Calibration . 57
B.2.2 Some Initial Approximations 58
B.2.3 Direct Zenith Opacity Measurement 58
B.2.4 Tipping Scan Opacity Measurement 59
B.2.5 Gain Corrected Tipping Scan Opacity Measurement . 59
B.2.6 The Local Oscillator Fudge Factor 60

C CTIP96.PAS 60

D WHRSTRT.PAS 103

E Watchdog Documentation 104

F Zip Documentation 106

G Unzip Documentation 122

H dat2text.c 140

I mon2text.c 142

J Cplots.csh 144

K MKdata.csh 147

L MKwdata.csh 150

M MKplots.csh 151

N monitor.csh 153

O MKweather.csh 159

P tauplot.csh 160

Q monplot.csh 161

R txtplot.csh 162

3

S wndplot.csh 167

T wdrplot.csh 172

U hist.csh 177

V time.csh 178

W Cdb.csh 180

X tipper.csh 181

Y mksites.csh 184

1 WARNING

This document is for internal use only. It contains speci�c information about
how to access the MMA Site Testing computers. Do not distribute outside
of NRAO.

2 Introduction

Much has changed since the original radiometer computer operation docu-
ment was written by Foster (1989). This document attempts to describe the
current computer hardware and software con�guration in enough detail to
allow continued operation and any necessary modi�cations. The radiometer
hardware itself is beyond the scope of this document. For a detailed descrip-
tion of the radiometer hardware, see Liu (1987) or contact Gerry Petencin
at the Array Operations Center.

Section 3 describes the hardware setups used to test the Chajnantor,
Chile site and, until recently, the Mauna Kea, Hawaii site. Section 4 de-
scribes, in detail, the software used to run the radiometer computer. Fi-
nally, section 6 provides a detailed description of the current data retrieval
software.

3 Hardware Con�guration

Two di�erent hardware con�gurations have seen recent use. Until recently,
NRAO operated a radiometer at the VLBA station on Mauna Kea. Since

4

this site is regularly sta�ed, a relatively simple setup was used. If a problem
developed, a telephone call or e-mail message could have things �xed within
hours. In addition, the presence of an Internet connection at that site made
data retrieval and communication easy. Although site testing on Mauna Kea
was discontinued recently, this type of con�guration may eventually �nd use
elsewhere. Therefore, we will also outline the Mauna Kea setup later in this
section.

Unlike the Mauna Kea site, the Chajnantor site is very remote and un-
sta�ed. The site has no power, no phone line, and, certainly, no Internet
connection. If a problem develops on the Chajnantor site, it takes days or
weeks to get someone to the site to check on the equipment. For this reason,
we must use a more complicated system to improve reliability.

3.1 Chajnantor, Chile, Hardware Con�guration

The Chajnantor site testing equipment is housed in a shipping container
on the site. On the north side of the shipping container is an array of
solar panels. The solar panels charge a bank of batteries stored inside the
container. The batteries, in turn, provide power for the site testing and
communications equipment. A windmill provides an additional source of
power for battery charging. Communications with the site is accomplished
by satellite telephone (but might be replaced by a cellular phone in the near
future). The satellite telephone antenna is attached to a mast on one corner
of the container. The rest of the satellite telephone hardware is stored inside.

The radiometer sits in a window on the south side of the container with
the feed horn sticking out. In addition, data cables run from an external
weather station, through a bulkhead connector, to the radiometer to provide
information on wind speed and direction. Outside temperature measure-
ments are obtained from a temperature probe which dangles below the feed
horn. Finally, inside the container, data from a number of monitor points
also connect to the radiometer. Table 1 lists the monitor points currently
in use.

Figure 1 shows a block diagram of the Chajnantor site radiometer hard-
ware con�guration. We will describe the function of all of this hardware by
tracing an incoming call to the container.

At the time of this writing, an outline of the procedures for calling the
Chajnantor site is maintained by Simon Radford. The most recent copy
of these procedures appears in Appendix A. For more information, see the
Saturn CompacT satellite phone documentation. The radiometer hardware

5

Channel Source Monitor Point

0 Internal Signal - Reference
1 Internal Hot - Reference
2 Internal Reference
3 Internal Reference Temp
4 Internal Hot Temp
5 Internal Out Temp
6 Internal In Temp
7 Internal Mixer Current
8 Internal Trippler Current
9 Internal Gunn Current
10 External Battery Voltage
11 External Solar Charge Current
12 Internal Supply Current
13 External Wind Speed
14 External Wind Direction
15 External Aux Temp

Table 1: Chajnantor Radiometer Monitor Points

connects to the secondary ID of the satellite phone. An incoming call to the
secondary ID of the satellite telephone will be answered by the Black Box
Corporation ASD-4 (Automatic Sharing Device).

3.1.1 The ASD-4 (Automatic Sharing Device)

The ASD-4 takes one input phone line and routes that signal to one of four
output ports. The default port (labeled \Phone" on the ASD-4) routes
an incoming call to the modem. The modem is con�gured to answer an
incoming call on the �rst ring it receives. This means that it actually takes
two rings to connect to the PC. The �rst ring is answered by the ASD-
4. The second ring (the �rst one the modem hears) is answered by the
modem. During a data transfer, the modem should be allowed to answer.
Once a successful connection is established, the radiometer communications
software (see section 4) attempts to transfer the most recent data. After
the ASD-4 answers, but before the modem does, a caller may use a touch-
tone code to transfer the call to one of the other lines. At the moment, the

6

Timer

Satellite

Telephone

ASD-4

Modem

Radiometer Computer

Interferometer

Hardware

Primary ID Secondary ID

Lan Cable

Delay

Box

InverterTOPS+

Power

Supply

Radiometer

Weather Station

Monitor Points

Figure 1: Block diagram of the Chajnantor, Chile, site radiometer hardware
con�guration. Dashed lines indication telephone lines. Solid lines without
arrows indicate power lines. Solid lines with arrows indicate data lines.

only other line from the ASD-4 leads to the Black Box Corporation TOPS+
(Tone Operated Power Switch). This line is accessed by pressing \ ".
It may be necessary to press \ " several times in rapid succession.

3.1.2 The TOPS+ (Tone Operated Power Switch)

The TOPS+ allows someone with a touch tone phone to call the site and
turn power on or o� for up to four separate devices. The TOPS+ takes a
phone line and a power source as its inputs. The outputs are four, three
pronged, electrical outlets. When a caller instructs the ASD-4 to transfer a
call from the modem to the TOPS+, the TOPS+ will let the line ring three
times before answering. When it answers, a voice will say, \Enter you're
access code." The access code is a four digit touch tone code set by the four

7

dials on the front of the TOPS+. At the time of this writing, the access
code is (). Once the correct access code is entered, the voice
will list the current state of the four receptacles. At the time of this writing,
it should say, \One: on, Two: o�, Three: on, Four: on." The caller can then
use single digit touch tone codes to manipulate the switch. Table 2 lists the
e�ect of each touch tone code. After making any necessary adjustments,
the caller can simply hang up, but it's much more fun to press '�'. At the
time of this writing, only receptacles #1 and #2 are in use. Receptacle #1
controls the power to the radiometer computer, and can be used to cause
a hard reboot. Receptacle #2 is connected to an inverter which controls
the power to the radiometer itself. When power to receptacle #2 is o�, the
radiometer is on. When power to receptacle #2 is on, the radiometer is o�.
The receptacle assignments are summarized in table 3.

Code E�ect

1 Receptacle 1: Power On
2 Receptacle 1: Power O�
3 Receptacle 2: Power On
4 Receptacle 2: Power O�
5 Receptacle 3: Power On
6 Receptacle 3: Power O�
7 Receptacle 4: Power On
8 Receptacle 4: Power O�
9 Not Used
0 Not Used
List the state of each receptacle
� Say, \Goodbye" and hang up

Table 2: Touch Tone Commands for the TOPS+

3.1.3 The Timer and Delay Box

Now that we have traced the path of an incoming call and described the
connections between the radiometer, weather station, and monitor points,
there are only a few more items to note. The radiometer computer's power

ows through two more devices. First, we use a digital timer (of the type
used by vacationers to turn house lights on and o�) to turn the radiometer

8

Receptacle Controlled Hardware Notes

1 Radiometer Computer See delay box discussion
2 Radiometer See inverter discussion
3 unused
4 unused

Table 3: Receptacle Assignments for the TOPS+

computer o� once per day (at about midnight, UT) for approximately two
minutes. This forces the radiometer computer to reboot at least once per
day, automatically clearing any software glitches which cause the computer
to hang. Note that the same thing can be done with the TOPS+, however,
there will be times when no one who knows how to use the TOPS+ is
available due to weekends, vacations, or other distractions. The second
device is a \delay box" on the power line. This delay box ensures that if the
power goes o�, the computer will remain o� for approximately two minutes
(this time is adjustable at the site, contact Gerry Petencin for instructions).
Turning power to a computer o� and then immediately back on can cause
the computer to hang. The delay box prevents this situation.

3.1.4 The LAN (Local Area Network)

Finally, the LAN cable deserves a brief mention in this discussion. Both the
radiometer computer and the interferometer computer run a simple LAN
(Local Area Network) program called Little Big LAN. Little Big LAN will
be described in more detail in the next section. The presence of the LAN
has proved most useful in the past when one or the other computer has
developed a fault.

3.1.5 Chajnantor Computer Hardware

Four computers are devoted to the Chajnantor site testing e�ort. The
present radiometer computer is a Dell 486 desktop. It is working well at
this time. A duplicate of this computer is kept in Tucson for use as a
backup and to test software modi�cations. The other two computers are
laptops. The Austin 486 laptop has a damaged hard drive. It will work for
short times, but is unreliable for long term use. The GRID 386 works well,

9

but is a bit slow. It makes a good emergency backup. Both laptops have
outdated radiometer software.

3.2 Mauna Kea, Hawaii, Hardware Con�guration

The hardware setup on the Mauna Kea VLBA site (which was dismantled
in July, 1996) was considerably simpler than the one on the Chajnantor site
for two reasons. First, VLBA site technicians are available on the Mauna
Kea site on a regular basis. This means that the complicated power and
telephone switches are not needed. If the radiometer computer hangs, a
phone call or electronic mail message is enough to get the system reset
in a timely fashion. Second, the Mauna Kea VLBA site has an Internet
connection. This greatly simpli�es communications.

Figure 2 shows a block diagram of the Mauna Kea hardware con�gu-
ration. Unlike the Chajnantor Chile setup, there are no telephone lines
involved. Instead, the computer's Ethernet card allows it to be accessed
from the Internet. The radiometer computer runs an ftp server which al-
lows access to data and other �les on the radiometer computer's disk. Power
is supplied by the VLBA station. Unlike the Chajnantor setup, there is no
weather station (we use the VLBA weather station data) or external monitor
points.

3.2.1 Mauna Kea Computer Hardware

The Mauna Kea computer is a Gateway 486 desktop computer with an
Ethernet card. At the time of this writing, the computer and monitor are
in boxes under the table in my oÆce.

3.3 Receiving Computer Hardware Con�guration

In sections 3.1 and 3.2, we described the communications hardware at each of
two sites. Our hardware discussion, therefore, can not be complete without
some mention of the computer which communicates with the remote sites,
referred to as the \receiving computer." Historically, the receiving computer
was a PC. At the time of this writing, however, the receiving computer is a
Sun workstation. The only special requirement for using a Sun workstation
as the receiving computer is access to a modem. While a modem is not a
standard component on most workstations, it is easy enough to add. Consult
the local computer sta� for more information. The modem should be set up

10

Ethernet

Card

Radiometer Computer

Ethernet

Power

Supply

Radiometer

RS232

Figure 2: Block diagram of the Mauna Kea, Hawaii, site radiometer hard-
ware con�guration. Dashed lines indication Ethernet connections. Solid
lines without arrows indicate power lines. Solid lines with arrows indicate
data lines.

to dial out and a dedicated modem is preferable over a shared modem as it
makes troubleshooting easier.

4 Radiometer Computer Software

The radiometer computer software package runs on any PC compatible com-
puter. At the time of this writing, the software runs as a DOS application
under Microsoft Windows 3.1 or 3.11. DOS is the preferred operating envi-
ronment if there is no communications program running. The main compo-
nent of the software package is the radiometer control, data acquisition, and
processing program (CTIP) described in section 4.2. All other software is
either secondary in importance or site speci�c. For this reason, we discuss
the CTIP program in some detail in section 4.2. Next, we discuss the Cha-
jnantor and Mauna Kea site communications software in sections 4.4 and
4.5. Between these two sites, we cover the two most likely communications
software con�gurations. Finally, we look at the rest of the system in section
4.6.

11

4.1 A few notes on MS-DOS (Micro Soft Disk Operating
System) File Extensions

Throughout this section we will be describing a number of MS-DOS pro-
grams. An MS-DOS �le name consists of up to eight characters, followed by
a \.", followed by up to three more characters. The last three characters are
called the �le name extension. Di�erent �le name extensions have di�erent
meanings. The ones we will encounter are summarized in table 4.

Extension File Type

BAT Batch
CMD Procomm Script
COM Compiled
DAT Generic Data or Radiometer Data
EXE Executable
MON Radiometer Monitor Data
OUT Generic Output or Allan Variances
PAS Pascal Source Code
PIF Program Information File
TXT ASCII Text or Phase Stability Data
ZIP Zip archive

Table 4: MS-DOS File Name Extensions

When we refer to a program, we will typically give the �le name without
the extension. The executable will have a .EXE detention and the source
code will have a .PAS extension. For any other type of �le, the full �le name
and extension will be give.

4.2 CTIP (Charlottesville TIPper)

The heart of the radiometer software package is the data acquisition soft-
ware, CTIP (Charlottesville TIPper). CTIP was not written all at once.
It started out in the early 1980's as a Turbo Pascal v3.0 program called
ARTEST. Development continued in a rather haphazard manner through
CTIP89, completed in the summer of 1989. Many programmers, some of
whom preferred poor programming styles, contributed to the source code
over the years. Despite this, the resulting program works. Maintenance of
the program, however, is not a task for the light hearted. The use of global

12

variables to pass data from one procedure or function to another, the use
of GOTO statements, and other bizarre programming practices mean that
what appears to be a trivial modi�cation to one part of the program may
adversely a�ect another part of the program. Modi�cations should always
be thoroughly tested before installing new code on a remote site.

CTIP89, with occasional, minor modi�cations, was in use through March
of 1995, when it was updated. A bug which prevented it from running on
anything faster than a 80286 was corrected. In addition, a new method for
calculating the opacity was added and the data �le format was changed. In
May of 1996, CTIP was again modi�ed to improve timing. All time delays
in the code are now based on the computer's real time, hardware clock.
There are presently two versions of CTIP in use. CTIP96 is the general
radiometer control program. CTIP96C, on the other hand, contains several
modi�cations speci�c to the Chajnantor MMA site testing program. Since
CTIP96 is the more general program, we will describe it �rst.

4.2.1 CTIP96

A complete listing of CTIP96.PAS appears in appendix C.
The CTIP96 program controls the radiometer operation, collects data

from the radiometer, performs the �rst stages of data analysis, and stores
the data on disk. CTIP96 operates in one of two modes: opacity mode or
phase stability mode. In opacity mode, the radiometer performs a tipping
scan every ten minutes. The sky brightness is recorded at several elevations,
the zenith opacity is determined by the three di�erent methods described
in appendix B, and the opacity data and monitor data are recorded in the
appropriate �les. In phase stability mode, CTIP96 instructs the radiometer
to \stare" at the zenith for one hour. The system makes a sky brightness
measurement about once every half second. CTIP96 calculates a 3.52 second
average from every seven measurements and records this value on disk. At
the end of the hour, CTIP96 calculates the Allan variance of the phase data
and store it on disk. The radiometer can also be con�gured to perform a
phase stability measurement while pointing straight down at a constant tem-
perature load. This allows direct measurement of the instruments stability
and is called a calibration measurement.

CTIP96 requires a number of auxiliary �les. The �rst, and perhaps most
important, is the serial port device driver, COMDRV.COM. This device
driver must be installed at boot time by including the line, \DEVICE =
COMDRV.COM" in the CONFIG.SYS �le. The serial port driver installs

13

several special purpose radiometer communications functions in memory.
When CTIP96 (or ARTEST) runs later, these functions are available to aid
communications with the radiometer.

In addition to the serial port driver, CTIP96 reads two con�guration
�les upon invocation. The �rst of these �les is FUDGE.PAS, which must be
located in the present working directory on the C: drive. A FUDGE.PAS
�le might look something like this:

0.955 Gain Fudge factor

19 Temperature Fudge Factor

-1.0 LOfudge

3.5 Frequency of phase stability runs in hours (0 deactivates)

5 Freq of calibration runs vs sky tests (0 deactivates)

256 Number of periods of gain averaging (default 4) (multiple of 2)

C site id character

The �rst item on each line is a value. CTIP96 ignores anything after
that �rst value, meaning that the rest of the line may be used for com-
ments. The �rst value is the gain calibration factor. This number should be
adjusted until the zenith opacity reported by CTIP96 approximately equals
the tipping scan opacity on a clear day. If this number is not of order unity,
there is probably a hardware problem with the radiometer.

The second and third lines should not be adjusted in most cases. The
second line gives the assumed adiabatic lapse rate (9:8ÆC=km) multiplied by
the assumed scale height (1:93km) of water vapor. It should only be adjusted
if there is reason to expect that either of these assumptions is signi�cantly
in error. The third line speci�es a correction to the measurements for local
oscillator re
ection within the radiometer enclosure. It is no longer needed
and can be safely set to 0:0. The value of �1:0 presently used does not
signi�cantly a�ect the measurements. See appendix B for more details.

The next three lines a�ect the phase stability mode of the program. The
�rst gives the frequency of phase stability measurements in hours. In the
above example, the radiometer will perform one phase stability measure-
ment every 3.5 hours. The next line speci�es the frequency of calibration
measurements. In this example, 1 out of every 5 phase stability measure-
ments will actually be a calibration measurement. Note that the radiometer
may ignore these values under certain circumstances (see below). The last of
the phase stability measurement parameters gives the number of 3.51 second
measurements used for gain averaging. In the above example, 256 periods

14

of 4 measurements each are used for the gain averaging. This number must
be a multiple of 2 in the range of 2 to 1024. If an incorrect value is given, it
will default to 4.

The last parameter in the FUDGE.PAS �le is the site ID character.
The data �les generated by earlier versions of CTIP had the form yym-
mddnn.EXT, where EXT was one of the following: DAT, MON, TXT, or
OUT. When the MMA project started testing multiple sites, it was decided
to replace the last character of the �le name extension with a character
which was unique to each site. At the time of this writing, two site ID char-
acters are in use: 'C' for the Chajnantor, Chile site and 'M' for the Mauna
Kea VLBA site.

After reading in the FUDGE.PAS �le, CTIP96 reads PHITIME.TXT,
which, like FUDGE.PAS, must be located in the present working directory
on the C: drive. The parameters in PHITIME.TXT, combined with some
of the parameters from FUDGE.PAS, determine the behavior of the phase
stability measurements. An example PHITIME.TXT appears below:

0 0 default timing 1 file values 2 both

1 0 will cause the converted file to be erased

960904 0845

960405 0650

As with the FUDGE.PAS �le, CTIP96 looks for its parameters at the
beginning of a line and ignores anything after them, allowing the user to
leave comments. The �rst value determines the timing of the phase stability
measurement. A 0 indicates that the phase stability run frequencies given
in FUDGE.PAS should be used. A 1 indicates that CTIP96 should read the
date-time pairs found on lines three through the end of the �le and perform
phase stability measurements only at those times. A value of 2 indicates
that CTIP96 should use both methods. Any other value deactivates the
phase stability mode entirely. In practice, 0 is used almost exclusively.

The second line determines if the text �le containing all 1024 sky bright-
ness measurements should be deleted once the Allan variances are calculated.
This parameter was added in the days when a 20 megabyte hard disk was
considered large. Today, there is no need to delete these �les. In fact, since
they may contain more useful information than the Allan variance �le, it is
probably better to keep them.

Finally, as mentioned above, the third and successive lines contain dates
and times when a phase stability measurement should be done. In practice,

15

this feature is rarely used, so PHITIME.TXT will usually contain only two
lines.

On execution, once CTIP96 �gures out how to decide if it should per-
form a phase stability measurement, it makes the decision. If phase sta-
bility measurements are to take place at regular intervals speci�ed in the
FUDGE.PAS �le, CTIP96 calculates the Julian hour, divides by the phase
stability measurement frequency, and examines the remainder. If the re-
mainder is 30 minutes or less, a phase stability measurement is started. If
the phase stability measurements are to take place at speci�c times given in
the PHITIME.TXT �le, CTIP96 compares these dates and times with the
date and time read from the system clock. Again, if the time is 30 minutes
or less past a scheduled phase stability measurement, one is started.

Regardless of whether a phase stability measurement was performed,
CTIP96 next reads the binary �le STORBOOL.DAT, which must be in
the present working directory on the C: drive. STORBOOL is written by
CTIP96 at the end of each opacity measurement and the programWHRSTRT,
which should be called once every time the computer reboots. Source code
for WHRSTRT appears in appendix D. STORBOOL.DAT contains a single
boolean variable which tells whether or not the system was just booted. If
the system was just booted, CTIP96 will initialize its variables and deter-
mine the next data �le to write. If the computer was not booted since the
last measurement, CTIP96 will read some of its global variables from data
�les, where they were stored at the end of the previous measurement. In
practice, this really isn't necessary, but with the tangled mess which is the
CTIP96 source code, it is easier to leave it in than to take it out.

CTIP96 now waits until at least 10 minutes have passed since the pre-
vious opacity measurement and then performs a new opacity measurement.
At this time, it also records a record in the monitor data �le.

CTIP96 generates four data �les. All four �les have names of the form
yymmddnn.EXT where yymmdd is the date in scienti�c format, nn is a
number which starts at 00 and increments every time a new �le is writ-
ten (reseting to 00 at the beginning of the day) and EXT is the �le name
extension (see table 5).

Once CTIP96 has performed its measurement, it exits, returning control
to the system or, more likely, a batch �le which performs other tasks. We
will describe such a batch �le later in this section.

16

Extension File Type

DAT Opacity Data (binary)
MON Monitor Data (binary)
OUT Allan Variance Data (ASCII)
TXT Phase Stability Data (ASCII)

Table 5: CTIP96 Data File Extensions

4.2.2 CTIP96C

CTIP96C is the version of CTIP96 which is presently running on the Chaj-
nantor MMA site in Chile. It behaves exactly like CTIP96 with the following
exceptions:

� Procedures screen and process data were modi�ed to re
ect the addi-
tion of weather station data and other external monitor points which
are read by the radiometer's data acquisition board. Sadly, a mod-
i�cation of the source code is the only way to add external monitor
points. Fortunately, this is a simple change.

� During phase stability measurements, we also record the wind speed
and direction at 3.51 second intervals. CTIP96C stores this data in
three column text �le with an extension of .WND. The �rst column
gives the time. The second and third are wind speed and wind direc-
tion respectively.

4.3 CTIP.BAT and Pkzip

As indicated earlier, CTIP96 performs only one opacity measurement each
time we invoke it. In fact, CTIP96 makes no more than one opacity mea-
surement every 10 minutes. However, it only takes about 4 minutes to make
the actual measurements. Phase stability measurements notwithstanding,
this means that the radiometer computer spends about 60% of its time
doing nothing. Historically, this time was used to run a communications
program to listen for attempts to down load data. However, with the ad-
vent of multitasking operating systems for PC's, this is no longer necessary.
The communications package now runs continuously. Although we no longer
need to time share between CTIP96 and the communications program, we
still make some use of the dead time.

17

CTIP96 is called from within the CTIP.BAT batch �le. (A batch �le is
analogous to a Unix shell script.) A typical CTIP.BAT might look like:

@echo off

break on

WHRSTRT

:BEGINLOOP

CTIP96C

if not exist c:\procomm\lock.txt pkzip -ex -i c:\pickup\pickup.zip c:\data*.*

GOTO BEGINLOOP

The �rst two lines tell the PC not to echo each command as it executes
and to allow the user to stop the batch job by pressing Control-C. The
third line executes WHRSTRT, which we described in section 4.2.1. The
batch �le then starts into a loop. The \:BEGINLOOP" is merely a label. It
serves as a target for the \GOTO BEGINLOOP" statement at the end of
the �le. The �rst step in the loop calls CTIP96C (this is the Chile version
of CTIP.BAT). Once CTIP96C completes its measurements and exits, the
batch �le instructs the PC to check for the existence of a lock �le in the
Procomm (see section 4.4) subdirectory. If the lock �le exists, it probably
means that Procomm is in the middle of a �le transfer. If the lock �le does
not exists, we call the pkzip program to add the new data to an archive �le
in the PICKUP directory on the C: drive. For Unix users, pkzip acts like a
combination of the tar utility and the compress utility and produces a single,
compressed �le from one or more �les. The compressed �le makes modem
data transfers easier, faster (and therefore cheaper), and more reliable (zip
archives include error checking information).

For more details on pkzip, refer to the Pkzip User's Guide.
WARNING: Because pkzip is so widely used, it is a favorite target for

hackers. Virus contaminated or Trojan Horse versions of pkzip are rela-
tively common. When upgrading, it is best to check the Pkware web page
(http://www.pkware.com) for the latest version. The Usenet comp.compression
newsgroup FAQ also contains information on the availability of safe versions.

4.4 Chajnantor Communications Software

The Chajnantor MMA site testing equipment uses three di�erent commu-
nications programs. Procomm is the most important of these, as it handles
regular data transfers from the site. In addition to Procomm, it is also

18

possible to use a \remote control" program called Close-up. Close-up is
both temperamental and unreliable, yet has proved useful in some sticky
situations. At the time of this writing, Close-up does not work, presum-
ably due to a software miscon�guration of the modem on the computer in
Chile. Finally, the Little Big LAN program provides a simple LAN (Local
Area Network) connecting the radiometer computer with the site testing
interferometer computer. Little Big LAN is mostly used to synchronize the
clocks on the two PC's, but has also proven useful by allowing access to one
computer through the other. This is particularly useful for diagnosing and
repairing apparent communications problems.

4.4.1 Procomm

In the summer of 1989, we chose Procomm 2.4.2 to handle communications
between the remote sites and the receiving computer. Procomm was chosen
because its powerful script language made automation of the communica-
tions process easy. Since then, Procomm Plus has replaced Procomm in
common usage. There is no reason why we could not use Procomm Plus for
the radiometer project. It would, however, require modi�cation and test-
ing of the scripts. For detailed information on Procomm, see the Procomm
manual.

On the radiometer computer, Procomm is found in the C:nPROCOMM
directory. In addition to procomm's executable and con�guration �les, there
should also be a �le called REMOTE.CMD. REMOTE.CMD is the radiome-
ter computer's Procomm script. The present version of this script appears
below. Note that ';' is the comment character and the Procomm scripting
language is not case sensitive.

;remote.cmd

SET PORT COM2

SET BAUDRATE 9600

GOSUB INIT ;initialize the modem

LOOP:

WAITFOR ``CONNECT'' 600

IF WAITFOR

DOS ``c:\procomm\Watchdog on''

PAUSE 10

TRANS ``Use Close-up (y/n)?''

RGET S1 1 30

19

FIND S1 ``y''

IF FOUND

DOS ``c:\pro2cup.bat''

hangup

GOTO END

ENDIF

PAUSE 1

TRANS ``Begin Transmission?''

RGET S1 2 30

FIND S1 ``go''

IF NOT FOUND

hangup

GOTO END

ENDIF

DOS ``copy c:\config\lock.txt c:\procomm''

DOS ``c:\dsz\dsz port 2 sz C:\PICKUP\PICKUP.ZIP''

PAUSE 1

TRANS ``Transmission Ok?''

RGET S1 1 30

FIND S1 ``y''

IF NOT FOUND

hangup

GOTO END

ENDIF

DOS ``copy c:\config\done.txt c:\procomm''

PAUSE 1

TRANS ``Hangup''

ENDIF

GOTO LOOP

END:

QUIT

INIT: ;initialize the modem

HANGUP

TRANS ``ATM0!'' ;tell modem speaker to shut up

PAUSE 3

TRANS ``ATS0=1!'' ;answer on first ring

PAUSE 3

RETURN

20

The �rst few lines of the script and the INIT subroutine initialize the
modem and the software. The script then waits for up to 10 minutes (600
seconds) for an incoming call. If no call arrives, the script loops and starts
waiting again. The reason for this loop is that procomm's WAITFOR com-
mand must be given a �nite time limit.

If an incoming call does connect, the script immediately starts a pro-
gram called watchdog. Watchdog monitors the serial port and reboots the
radiometer computer if the DCD (Data Carrier Detect) signal is lost. This
prevents the communications software from accidently hanging the computer
in the event of a bad connection. For more information on watchdog, see
the documentation in appendix E.

Once the script has protected itself from bad phone connections, it begins
a handshaking dialog with the caller. Most of the time, the caller will be the
data retrieval computer. However, the script issues enough text prompts for
a human to respond as well. First, the script determines if the caller wishes
to connect with close-up. If that is the case, it runs C:nPRO2CUP.BAT to
change the system con�guration and reboots. Pro2cup.bat will be explained
in more detail later.

If the caller is not interested in using Close-up (smart caller...), the script
prepares for a data transfer. First, it copies a lock �le into the Procomm
directory. The existence of a lock �le will prevent pkzip from trying to
update pickup.zip during the data transfer. Then, Procomm calls DSZ. DSZ
is a program which transfers data with the z-modem �le transfer protocol.
At the time of this writing, Z-modem is the fastest data transfer protocol
available. In its full featured version (DSZ), it is also among the most

exible and reliable. DSZ has literally hundreds of options to deal with any
number of communications diÆculties. For our purposes, however, we only
take advantage of the capability to restart a failed �le transfer, which is
invoked at the receiving end. For more information on DSZ, see the DSZ
documentation.

Once the data transfer is complete, the script asks the caller if it received
the data �le. If the caller indicates that the transfer was a success, the
script copies the \done.txt" �le into the Procomm directory and reboots.
On reboot, the presence of the \done.txt" �le in the Procomm directory
signals the computer to delete the pickup.zip �le and to remove the lock �le.
This allows pkzip to begin updating the pickup �le again. The reboot also
forces CTIP to start a new data �le.

21

4.4.2 Close-up

Close-up is a remote control communications program. It allows someone
calling from a remote computer to (theoretically) control the computer as
if they were sitting at the console. This means that the communications
software has to send graphical information as opposed to simple text. Close-
up has a poorly written user interface as well as a few bugs. Close-up's
data transfer protocol is also slow and unreliable, especially on noisy lines.
Despite all of this, Close-up has been of use in the past.

To dial into the radiometer computer with close-up, �rst call with Pro-
comm. As described above, when a call comes in to the radiometer com-
puter, the script prompts the caller to determine if this is a data transfer, or
if the caller wants close-up. If the caller selects close-up, the script modi�es
the system con�guration �les so that close-up has control of the serial port.
This causes a reboot. The caller can then call back normally with close-up.
See the close-up manual for more information.

WARNING: When a closeup call is completed, the caller must manually
run C:nCUP2PRO.BAT to recon�gure the system for data transfers. Data
transfers will not be possible until this is done.

NOTE: Strictly speaking, Close-up is not necessary. With the exception
of Microsoft windows, there is nothing on the radiometer computer which
requires a graphical interface. In the future, it might be worth considering
the use of Procomm Plus in host mode for both data transfers and mainte-
nance access to the radiometer computer. The Procomm Plus Host Mode
script could be easily modi�ed for this purpose and the elimination of both
Procomm and Close-up would greatly simplify the radiometer computer
software.

4.4.3 Little Big LAN

Little Big LAN allows two or more computers to communicate over serial or
parallel connections as if they were part of a Local Area Network. The Little
Big LAN manual provides unusually clear and complete documentation, so
we will not describe it here. Refer to the manual for more information.

4.5 Mauna Kea Communications Software

The Mauna Kea communications set up is considerably simpler than the
Chajnantor communications set up. Since the Mauna Kea VLBA site has

22

an Internet connection, we simply use the PC-TCP software package to set
up an ftp (File Transfer Program) server.

If this communications method is chosen again in the future, contact the
local systems administrator to get an Internet address for the radiometer
computer and assistance on con�guring the software.

4.6 The Radiometer Computer Setup

Conceptually, the radiometer software and the communications software do
all of the work required to run the site testing equipment and send data back
for analysis. Practically, however, one must also consider the underlying
operating system. All of the software described to this point is designed to
run under MS-DOS. It can also run under Microsoft Windows 3.1.

4.6.1 CONFIG.SYS

When an MS-DOS system boots, it reads two �les from the root directory on
the boot drive (typically C: unless there is a
oppy in the A: drive). The �rst
�le, CONFIG.SYS, loads device drivers and sets some parameters for the
system. The CONFIG.SYS �le from the Chajnantor radiometer computer
appears below. It is considerably more complicated than the corresponding
�le for the Mauna Kea setup because the Chajnantor setup is consider-
ably more complicated. Note that it is often not necessary to modify the
CONFIG.SYS �le manually when installing new software. Most installation
programs will o�er to modify CONFIG.SYS for you. This is usually safe as
most installation programs will �rst make a backup copy of CONFIG.SYS.

DEVICE=C:\DOS\SETVER.EXE

DEVICE=C:\HIMEM.SYS

DOS=HIGH

FILES=30

BUFFERS=40

SHELL=C:\DOS\COMMAND.COM /P /E:1024

DEVICE=C:\DOS\POWER.EXE

DEVICE=C:\IFSHLP.SYS

STACKS=9,256

DEVICE=c:\tipper\COMDRV.COM

DEVICE = C:\IOMEGA\ASPIPPA3.SYS Scan Info Quiet

DEVICE = C:\IOMEGA\SCSICFG.EXE /V

DEVICE = C:\IOMEGA\SCSIDRVR.SYS

23

DEVICE=C:\LBL\netunits.sys

DEVICE=C:\LBL\net00000.sys #1 ``Radiometer''

The �rst two lines are MS-DOS device drivers. SETVER.EXE merely
reports the MS-DOS version number when the system boots. The second
line gives MS-DOS access to the higher memory addresses in the computer.
When MS-DOS was �rst written, many years ago, no one ever envisioned the
need for more than 640 Kbytes of memory on a personal computer. In order
to address more than 640 Kbytes of memory, while maintaining backward
software compatibility, a special device driver (HIMEM.SYS) is required.
The third line simply tells the computer to put the operating system in the
high memory area made available by the HIMEM.SYS device driver.

Four of the next six lines set some of the more important MS-DOS
environment variables. The FILES variable tells the operating system how
many �le handles should be available. In this case, no more than 30 �les may
be opened at once. Likewise, BUFFERS and STACKS specify the maximum
number of each of these items. For STACKS, we also must specify a stack
size, 256 bytes in this case. Finally, the SHELL variable tells MS-DOS where
to look for its command interpreter. It should rarely be necessary to modify
these variables. Installation programs will modify them for you if necessary.

The seventh and eighth lines install twomore device drivers. POWER.EXE
is Dell computer's power management software, and will not appear in all
CONFIG.SYS �les. IFSHLP.SYS is a Microsoft Windows device driver.

The remainder of the �le installs device drivers for speci�c programs.
COMDRV.COM is the serial port driver used by CTIP. This driver must be
present on any computer running CTIP.

The next three drivers allow the use of the Iomega ZIP drive installed
on the Chajnantor computer. Originally, the purpose of this extra drive was
to provide some protection against hard disk crashes. However, such use
created more problems than it solved. It could be removed if necessary.

Finally, the last two device drivers are used by Little Big LAN. See the
Little Big LAN manual for more information.

4.6.2 AUTOEXEC.BAT

The second �le that MS-DOS reads in the boot-up process is AUTOEXEC.BAT.
The Chajnantor AUTOEXEC.BAT �le appears below.

@ECHO OFF

24

rem -- THE NEXT LINE IS REQUIRED FOR DMI SUPPORT; DO NOT REMOVE OR MODIFY.

rem mi\dos\bin\sl.exe

C:\SMARTDRV.EXE /X

C:\DOS\DOSKEY /INSERT

PROMPT PG

PATH

C:\;C:\DOS;C:\WINDOWS;C:\MOUSE;C:\LBL;c:\tp;c:\tipper;c:\pkzip;c:\procomm;c:\dsz;c:\p

C:\UTILITY\DPMSSAVE.COM 20

SET TEMP=C:\DOS

SET COMSPEC=C:\DOS\COMMAND.COM

SET MOUSE=C:\MOUSE

@SET SCSI_DRIVER = C:\IOMEGA

@SET SCSI_UTILITY = C:\IOMEGA

C:\MOUSE\MOUSE.EXE /Q

REM [Dellmenu]

rem ELL\DELLMENU.EXE

REM [End_Dellmenu]

C:\LBL\net8

C:\LBL\par_link lpt2 int13

C:\LBL\net21

c:\lbl\utils\netclock node:2

if exist c:\procomm\lock.txt del c:\procomm\lock.txt

if exist c:\procomm\done.txt del c:\pickup\pickup.zip

if exist c:\procomm\done.txt del c:\procomm\done.txt

win

REM Reminder: Network drivers MUST be loaded before Close-Up.

AUTOEXEC.BAT is nothing more than a special batch �le which is run
when the system boots. In this example, the system uses this �le to set
several variables and load some more device drivers into memory. See an
MS-DOS manual for details on the individual commands. See the Little Big
LAN manual for details on the LBL programs.

The last four lines are of particular interest to us. First, the batch �le
checks to see if a lock �le exists. If it does, it is removed. If the \done"
�le also exists, we know that a successful data transfer just took place and
we can remove the pickup.zip �le. Finally, the batch �le starts Microsoft
Windows.

25

4.6.3 Microsoft Windows

When Microsoft Windows starts up, it checks a special program group called
the startup group. Program icons shown in the startup group window are
executed as soon as Microsoft Windows starts. In our case, we have two
such icons in the startup window. The �rst runs CTIP.BAT (see section
4.3). The second runs procomm.bat (shown below).

:fred

sleep

procomm /fremote

goto fred

Procomm.bat merely loops to ensure that if Procomm does exit unex-
pectedly, it gets restarted. The sleep program provides a ten second delay
between the time that the batch �le starts and the time that Procomm
executes. Microsoft Windows will often start the programs in the startup
window before checking the serial ports. It then gets confused if it �nds that
one of these programs has claimed the serial port. The delay allows time for
Microsoft Windows to check the serial ports.

5 Setting Up a New System

Eventually, it may be necessary to set up a new site testing computer from
scratch. The following procedure should work. These instructions are some-
what vague, but should cover a wide range of situations. It's probably best
to copy an existing setup and use this as a checklist as you modify it.

� First, set up the computer so that it can run MS-DOS and Windows
(if desired). Most new PCs come con�gured this way.

� Create the following subdirectories for CTIP: C:ntipper, C:nDATA.

� Install CTIP in the C:ntipper directory and edit the fudge.pas and
phitime.txt �les as needed. Modify the CTIP source code and recom-
pile if any of the radiometer's external data lines are to be used.

� Choose a communications strategy (if desired). Inevitably, the com-
munications setup is unique for every site. Try to choose communica-
tions software which will work well with the hardware available on the

26

site. For modem transfers, the Procomm, pkzip, and dsz combination
described in section 4.4 is strongly recommended.

� Create or modify the CTIP.BAT, AUTOEXEC.BAT, and CONFIG.SYS
�les as appropriate for the chosen communications setup. Make sure
COMDRV.COM appears in the CONFIG.SYS �le.

� In Windows, use the PIF Editor in the Main Group to create icons
for CTIP.BAT and the communications program (if necessary). Move
these icons to the startup group.

� Add any extra software which might be useful on site. A copy of the
Turbo Pascal compiler is strongly recommended. A variety of common
text editors is also wise. Finally, any diagnostic software which came
with the computer should be installed as well as any software required
to operate any special hardware.

� Test the system thoroughly. Simulate power failures by pulling the
plug at di�erent times (during a tipping scan, during a data transfer,
etc). Simulate communications failures by pulling the phone line out
of the modem. Simulate failure of the radiometer by disconnecting it
from the serial port. Make sure the system doesn't \hang" when any
of these failures occur.

� Test the system thoroughly again.

� If the system is to be combined with other hardware (such as a LAN
connection to another computer) hook up the additional hardware and
test the system again.

� If the system is going to a remote site, where it will be diÆcult to
access in the event of a problem, test the system again.

� Sit back and wait for the system to break down anyway. If you've
done your job well, this won't happen very often. If you've done your
job very well, a broken system will eventually �x itself.

6 Tucson Software

Up to this point, we have described the data acquisition and communications
software from the radiometer computer standpoint without explaining in any

27

detail what becomes of this data when it leaves the radiometer computer.
In this section, we will describe the software setup in use at the time of this
writing.

The \receiving" site testing computer is a Sun workstation. There are a
number of reasons for this. Most of the observatory's computing resources
are based around workstations. The Unix operating system has a built in
scheduling program, cron, which makes automation of various tasks con-
siderably simpler. The Unix text based interface is much better suited to
automation than the graphical interfaces now in favor among PC users.
And, �nally, Unix handles errors much more gracefully than a PC, which
will usually stop what it is doing and ask the user for help.

Common data handling tasks are accomplished by C-shell scripts. Some
of these scripts are called manually, but many of them are routine, and
best handled by cron. Section 6.1 describes cron in general and explains a
typical MMA site testing crontab. Sections 6.3, 6.4, and 6.5, describe the
shell scripts which are run on a daily, weekly, and monthly basis. Section ??
describes some of the scripts which might be run manually. Finally, section
6.7 describes the shell scripts which update the site testing web pages.

6.1 Cron

The Unix cron daemon allows a user to schedule commands to execute at
certain times. Tasks are scheduled by the crontab command. To submit
scheduling information to cron, type \crontab �lename", where \�lename" is
the name of a �le containing the scheduling information. A typical schedule
�le appears below. A \#" character indicated a comment. Blank lines are
ignored. Non-comment, non-blank lines contain six �elds. The last �eld is
the command to be scheduled. The �rst two �elds give the time of day when
the command should be executed. The �rst �eld is minutes. The second is
hours. The third �eld gives the day of the month. The fourth �eld gives
the month. The �fth �eld gives the day of the week (0 = Sunday). Multiple
entries may be speci�ed as a comma separated list or as a range of values
separated by a dash. A star in any �eld indicates that all values of that �eld
match.

#

~sfoster/tipper/events

#

Mauna Kea Data Retrieval, Plotting, and Raw Data Archving scripts

28

#

#45 18 * * * /home/dietcoke/sfoster/tipper/MaunaKea/MKdata.csh

45 19 * * * /home/dietcoke/sfoster/tipper/MaunaKea/MKwdata.csh

#30 19 * * * /home/dietcoke/sfoster/tipper/MaunaKea/MKplots.csh

#00 08 * * 1 /home/dietcoke/sfoster/tipper/MaunaKea/rawdata.csh

#

Chile Data Retrieval, Plotting, and Raw Data Archving scripts

#

30 18 * * * /home/dietcoke/sfoster/tipper/Chile/Cdata.csh

30 19 * * * /home/dietcoke/sfoster/tipper/Chile/Cplots.csh

00 08 * * 1 /home/dietcoke/sfoster/tipper/Chile/rawdata.csh

#

Chile Meteorological Data Retrieval

#

00 2,5,8,11,14,17,20,23 * * * /home/dietcoke/sfoster/tipper/Chile/met.csh

#

Creation of Tipper Raw Data Web Page

#

00 20 * * * /home/dietcoke/sfoster/public_html/tipper/monitor.csh

#

Monthly cleanup of ~mma/tipper

#

00 01 1 * * /home/dietcoke/sfoster/tipper/cleanup.csh

#

Daily Creation of localbackup.tar.Z

#

00 01 * * * /home/dietcoke/sfoster/localbackup.csh

In this example, we run the localbackup.csh script every night, just after
midnight. The cleanup.csh script, on the other hand, runs on the �rst of
each month. Finally, we run the rawdata.csh script every Monday morning.
The function of each of these scripts will be explained in later sections.

6.2 The Tipper Directory

The shell scripts described in the coming pages must manipulate a fairly
large amount of data. A sane directory structure makes this task much
easier. All of the radiometer data retrieval and processing scripts reside in
the tipper directory. The tipper directory contains a subdirectory for each

29

site. Each site directory, in turn, contains several subdirectories.

� The archive directory is further divided by month. Each month sub-
directory contains all of the daily radiometer data �les in an ASCII
format.

� The rawarchive directory contains the same data, but in the binary
format produced by the radiometer computer.

� The rawdata directory is a holding pen for any binary format opacity
�les and ASCII format Allan variance �les which are waiting to be
sent to Charlottesville.

� The database directory contains monthly and longer term databases.
It also contains merged opacity, weather, and phase stability database.

� The �gures directory contains postscript and gif versions of �gures
generated for the WWW pages and other purposes.

� In the Chile site directory, the satpics subdirectory (which is further
divided by month) contains jpeg images of the GOES-8 data for South
America.

� Finally, any number of other special purpose directories may be present.
These directories will not be described in this document.

6.3 Daily Shell Scripts

The data retrieval and plotting shell scripts run once per day. The data
retrieval scripts recover data from various sites, convert it to ASCII format
(as necessary), and store it in the appropriate directories. The data plotting
scripts produce the various plots used to monitor the site and equipment.
Historically, the plotting scripts produced hard copy plots. The plotting
scripts were kept separate from the data retrieval scripts so that the plots
could print in the middle of the night. Now, the plotting scripts produce
gif �les and another script (monitor.csh) incorporates these plots into a web
page.

Table 6 summarizes the daily shell scripts. Each script is explained in
more detail below.

30

Script Function

Cdata.csh Retrieve and Store Chajnantor Data
Cplots.csh Create Plots of Chajnantor Data

MKdata.csh * Retrieve and Store Mauna Kea Data
MKwdata.csh Retrieve and Store Mauna Kea Weather Data
MKplots.csh * Create Plots of Mauna Kea Data

met.csh Retrieve and Store South American GOES-8 Data
monitor.csh Create Tipper Monitor Data Web Page

localbackup.csh Create Local Backup File
MKweather.csh Retrieve Mauna Kea Weather Data (Socorro)

Table 6: Summary of Daily Shell Scripts. Scripts marked with a '*' are not
presently in use.

6.3.1 Cdata.csh

Cdata.csh retrieves data from the Chajnantor site radiometer computer. It
is one of the more complicated scripts we will discuss in this section. A
listing appears below.

#!/bin/csh

echo -n ``Chile Automatic Data Retrieval: Started ``

date

Useful bits from the .cshrc which normally aren't executed for

non-interactive shells.

alias ls 'ls -Fa'

set notify

umask 002

limit coredumpsize 500

setenv DISPLAY dietcoke.tuc.nrao.edu:0

setenv XFILESEARCHPATH /usr/openwin/lib/%T/%N%S

set tmp = tmp$$

31

cd $work/tipper/Chile

echo running > 'cdata.flg'

SoftWindows >& /dev/null

xset r on

rm cdata.flg

if (-e error.txt) then

echo Error: DSZ reports failed file transfer. Attempting to

continue.

rm error.txt

endif

dos2unix session.log session.log

cat session.log >> data_retrieval.log

awk -f phonebill.awk session.log >> phonebill.log

if (-e pickup.zip) then

~/bin/unzip -a -L -o pickup.zip >& /dev/null

rm pickup.zip

rm glob*

set phi = `ls | grep -i ``.phi'' | wc -l`

if ($phi != 0) rm *.phi

else

echo Error: Failed to recover pickup.zip.

goto endscript

endif

if (-e newmon.log) mv newmon.log $tmp.newmon

if (-e newdat.log) mv newdat.log $tmp.newdat

if (-e newtxt.log) mv newtxt.log $tmp.newtxt

if (-e newout.log) mv newout.log $tmp.newout

if (-e newwnd.log) mv newwnd.log $tmp.newwnd

set mon = `ls | grep ``.moc'' | wc -l`

if ($mon != 0) then

foreach f (*.moc)

set date = `echo $f | awk '{printf(``%s\n'',substr($1,1,6))}'`

set yymm = `echo $date | awk '{printf(``%s'',substr($1,1,4))}'`

echo $date >> $tmp.newmon

if(! -e rawarchive/$yymm) mkdir rawarchive/$yymm

32

mv $f rawarchive/$yymm

end

endif

set dat = `ls | grep ``.dac'' | wc -l`

if ($dat != 0) then

foreach f (*.dac)

set date = `echo $f | awk '{printf(``%s\n'',substr($1,1,6))}'`

echo $date >> $tmp.newdat

mv $f rawdata

end

endif

set text = `ls | grep ``.txc'' | wc -l`

if ($text != 0) then

foreach f (*.txc)

set date = `echo $f | awk '{printf(``%s\n'',substr($1,1,6))}'`

set base = `echo $f | awk '{printf(``%s\n'',substr($1,1,8))}'`

set yymm = `echo $date | awk '{printf(``%s'',substr($1,1,4))}'`

echo $date >> $tmp.newtxt

if (! -e archive/$yymm) mkdir archive/$yymm

cp $f archive/$yymm/$base.txt

if(! -e rawarchive/$yymm) mkdir rawarchive/$yymm

mv $f rawarchive/$yymm

end

endif

set out = `ls | grep ``.ouc'' | wc -l`

if ($out != 0) then

foreach f (*.ouc)

set date = `echo $f | awk '{printf(``%s\n'',substr($1,1,6))}'`

set yymm = `echo $date | awk '{printf(``%s'',substr($1,1,4))}'`

set base = `echo $f | awk '{printf(``%s\n'',substr($1,1,8))}'`

echo $date >> $tmp.newout

if (! -e archive/$yymm) mkdir archive/$yymm

cp $f archive/$yymm/$base.out

end

mv *.ouc rawdata

endif

set wind = `ls | grep ``.wnc'' | wc -l`

if ($wind != 0) then

foreach f (*.wnc)

33

if(-z $f) then

rm $f

endif

end

endif

set wind = `ls | grep ``.wnc'' | wc -l`

if ($wind != 0) then

foreach f (*.wnc)

set date = `echo $f | awk '{printf(``%s\n'',substr($1,1,6))}'`

set base = `echo $f | awk '{printf(``%s\n'',substr($1,1,8))}'`

set yymm = `echo $date | awk '{printf(``%s'',substr($1,1,4))}'`

echo $date >> $tmp.newwnd

if (! -e archive/$yymm) mkdir archive/$yymm

cp $f archive/$yymm/$base.wnd

if(! -e rawarchive/$yymm) mkdir rawarchive/$yymm

mv $f rawarchive/$yymm

end

endif

if(-e $tmp.newdat) awk -f plotlog.awk $tmp.newdat > newdat.log

if(-e $tmp.newmon) awk -f plotlog.awk $tmp.newmon > newmon.log

if(-e $tmp.newtxt) awk -f plotlog.awk $tmp.newtxt > newtxt.log

if(-e $tmp.newout) awk -f plotlog.awk $tmp.newout > newout.log

if(-e $tmp.newwnd) awk -f plotlog.awk $tmp.newwnd > newwnd.log

if (-e newmon.log) then

set dates = `awk '{printf(``%s ``,$1)}' newmon.log`

foreach d ($dates)

set yymm = `echo $d | awk '{printf(``%s'',substr($1,1,4))}'`

set mon = `ls rawarchive/$yymm | grep $d | grep ``.moc'' | wc -l`

if ($mon != 0) then

foreach f (rawarchive/$yymm/$d*.moc)

mon2text $f >> $d.mon

end

endif

awk '{printf(``%7.3f %7.3f %7.3f %7.3f\n'',$1,$7,$15,$16)}'

%$d.mon>$d.wea

if (! -e archive/$yymm) mkdir archive/$yymm

mv $d.mon archive/$yymm

34

mv $d.wea archive/$yymm

end

endif

if (-e newdat.log) then

set dates = `awk '{printf(``%s ``,$1)}' newdat.log`

foreach d ($dates)

set yymm = `echo $d | awk '{printf(``%s'',substr($1,1,4))}'`

set dat = `ls rawarchive/$yymm | grep $d | grep ``.dac'' | wc -l`

if ($dat != 0) then

foreach f (rawarchive/$yymm/$d*.dac)

dat2text $f >> $d.dat

end

endif

set dat = `ls rawdata | grep $d | grep ``.dac'' | wc -l`

if ($dat != 0) then

foreach f (rawdata/$d*.dac)

dat2text $f >> $d.dat

end

endif

if (! -e archive/$yymm) mkdir archive/$yymm

mv $d.dat archive/$yymm

end

endif

endscript:

rm $tmp.*

echo -n ``Chile Automatic Data Retrieval: Finished ``

date

The �rst line simply identi�es the script as a C-shell script. Normally,
we would call /bin/csh with the -f switch. The -f switch causes the C-shell to
inherit its environment from the parent shell. However, this switch does not
seem to work under Solaris and cron provides only a minimal environment.
As a result, when the script executes, it will look for a .cshrc �le in the user's
home directory. A minimal .cshrc for this script must set the path and any
other environment variables which might be needed.

35

The next lines let the user know that the script has started and when it
started. This is not of much use when the script is run manually. However,
one of cron's features is that it captures any output to STDOUT and mails
it to the user. As a result, when cron runs this script, the user will receive
a mail message of the form:

Date: Sat, 14 Sep 1996 18:34:29 -0700

From: ``S. Foster'' <sfoster@heineken.tuc.nrao.edu>

To: sfoster@heineken.tuc.nrao.edu

Subject: Output from ``cron'' command

Your ``cron'' job

/home/dietcoke/sfoster/tipper/Chile/Cdata.csh

produced the following output:

Chile Automatic Data Retrieval: Started Sat Sep 14 18:30:03 MST 1996

Chile Automatic Data Retrieval: Finished Sat Sep 14 18:34:27 MST 1996

Next, we set some extra environment variables, shell variables, and make
sure we are in the correct directory. Note that the DISPLAY variable must
be set. This is important for running SoftWindows later on.

The next block of code runs SoftWindows, a PC emulation program.
SoftWindows will run procomm to handle the actual modem communica-
tions. We could do this from Unix. However, the Unix version of Z-modem
contains only a minimal set of features. In addition, the Procomm script
language provides more capability than any of the Unix communications
programs. We will describe the SoftWindows setup in more detail below.
Note that in order for SoftWindows to run, the user must be logged in and
running Open Windows. It is advisable to lock the screen when not present.

Due to a bug in SoftWindows, we must call xset to turn the keyboard
repeat function back on. After that, we check for the existence of an error
�le. The SoftWindows session creates this �le if, for some reason, the data
transfer failed. If detected, the script prints an error message and attempts
to continue, in case a partial, but usable data �le was retrieved. Cdata
then converts the communications session log �le from MS-DOS to Unix
format and appends it to the communications log �le (phonebill.log). An
examination of the communications log �le is the �rst step in troubleshooting
a communications problem. An example appears below.

36

...

8-8-1996 18:30:40 - 18:32:27 1.78 0.62 Connect

8-8-1996 18:32:27 - 18:34:32 2.08 2.70

8-8-1996 18:34:32 - 18:39:46 5.23 4.17 Connect DSZ Z 150125 655 cps

8-9-1996 18:30:39 - 18:32:26 1.78 0.63 Connect

8-9-1996 18:32:26 - 18:34:30 2.07 2.70

8-9-1996 18:34:30 - 18:36:12 1.70 0.60 Connect

8-10-1996 18:30:38 - 18:35:00 4.37 3.22 Connect DSZ Z 112632 654 cps

8-11-1996 18:30:39 - 18:33:29 2.83 1.70 Connect DSZ Z 49586 616 cps

8-12-1996 18:30:37 - 18:33:37 3.00 1.82 Connect DSZ Z 54549 622 cps

...

Each day is separated by a blank line. The �rst entry gives the date.
The second give the start time for the communications attempt. The third
gives the end time. Note, that this time is not the total amount of satellite
phone time. The next number gives the total elapsed time in minutes for
the attempt. The number after that gives the elapsed time between the
establishment of a successful modem to modem connection and a hangup in
minutes. Note that this time will not be accurate for failed �le transfers.
The next several entries can be used to determine how far a �le transfer
attempt got before failing. If the word \Connect" appears, the two modems
made a successful connection. If \DSZ" appears, it means that the Z-modem
program was invoked. In other words, a �le transfer was started. Every-
thing after that is returned by Z-modem itself. A \Z" indicated a successful
Z-modem transfer. An \E" indicates that an error occurred during the
transfer. In either case, the number of bytes transferred are listed next, fol-
lowed by the throughput in characters per second. At 9600 baud, we would
expect 1200 cps. However, we never achieve this in practice. Anything over
600 cps is good throughput for the satellite phone.

More detailed information on the most recent communications attempt
can be found in the \session.log" �le.

9-12-1996 18:30:38 Try1: Dialing

9-12-1996 18:31:46 Connection Established

9-12-1996 18:31:53 Starting DSZ

37

9-12-1996 18:33:24 DSZ Finished

Z 52888 19200 bps 614 cps 2 errors 0 1024 pickup.zip 0

9-12-1996 18:33:26 Successful Transmission Acknowledged

9-12-1996 18:33:33 Hangup

The session.log �le is fairly self explanatory. However, the line after
\DSZ Finished" may be somewhat confusing. This line comes directly from
the DSZ program and give the status code (\Z" or \E") described above,
the number of bytes transferred, the computer to modem baud rate (do not
confuse this with the modem to modem baud rate), the throughput, the
number of errors (Note: Z-modem will resend packets which have errors),
the number of
ow control stoppages, the block size, the �le name, and,
�nally, the DSZ serial number.

Next, we call unzip to extract the data �les from the zip archive. See
appendix G for documentation of unzip. The next section of the script
moves the raw data �les to either the rawdata or rawarchive directories, as
apporpriate. It also creates or updates a log �le for each type of data �le.
The log �le contains all of the dates for which new data has arrived.

Finally, the scripts calls the programs dat2text and mon2text (see ap-
pendices H and I for source code and a brief description) to convert the
binary data �les to text format. All of the opacity data for a given day
is concatenated and written to yymmdd.dat, where yymmdd is the date
in scienti�c format in the appropriate archive directory. Likewise, all of the
monitor data for a given day is concatenated and written to a �le called yym-
mdd.mon. Weather data is then extracted from the monitor �le and written
to yymmdd.wea. The phase stability data (yymmddnn.txt), Allan variance
data (yymmddnn.out) and high frequency wind data (yymmddnn.wnd) are
simply copied to the archive directory.

As described above, we use a PC emulation program called SoftWindows
to perform the actual communications tasks. SoftWindows requires some
con�guration. However, the con�guration is a fairly straight forward, menu
driven, procedure. Click on \Options" to make any necessary adjustments.

Like an actual PC, when SoftWindows starts up, it looks for a CON-
FIG.SYS and an AUTOEXEC.BAT �le in its root directory (in this case, a
binary �le on the Unix �le system, not a physical disk). There is nothing
special in the SoftWindow's CONFIG.SYS �le. The AUTOEXEC.BAT �le
is another matter.

echo off

38

set dszlog=dsz.log

path=c:\;c:\dos;c:\insignia;c:\tp;c:\closeup6;c:\pkzip;

set temp=c:\dos

c:\insignia\mouse.com

prompt pg

net use h: $HOME

net use r: /

net use t: /tmp

fsadrive e:

echo on

ver

doskey

if not exist e:\cdata.flg goto end

rem

rem Download data from Chile

rem

cd procomm

if not exist error.txt if exist pickup.zip del pickup.zip

procomm /fpickup

cd ..

if exist c:\procomm\pickup.zip copy c:\procomm\pickup.zip e:

if exist c:\procomm\error.txt copy c:\procomm\error.txt e:

if exist c:\procomm\session.log copy c:\procomm\session.log e:

if exist c:\procomm\session.log del c:\procomm\session.log

c:\insignia\exitswin

:end

The �rst thing the autoexec batch �le does is set some environment vari-
ables and load a mouse driver. The next lines assign some MS-DOS logical
drive names to some Unix directories. The \fsadrive" is a special assign-
ment. The fsadrive is actually assigned in the SoftWindows con�guration
described above. Note that using the MS-DOS DIR command on a Unix
directory may produce odd results. This is a result of the fact that MS-DOS
has much more stringent �le naming conventions than Unix. Any Unix �le-
name which is too long, or otherwise improper under MS-DOS will appear
as garbage. Also note that �lenames are not case sensitive in MS-DOS, but
are in Unix. This can also create confusion. Be very careful when copying
�les between SoftWindows and Unix.

39

Next, SoftWindows looks for the �le \cdata.
g" in the tipper/Chile di-
rectory. If this �le exists, SoftWindows knows that it should attempt a data
transfer. If not, it skips to the end of the �le and enters interactive mode.
If a data transfer is to be performed, the batch �le calls procomm with
the pickup.cmd script (shown below). The pickup.cmd script makes three
attempts to recover a pickup.zip �le from the Chajnantor radiometer com-
puter. Next, the batch �le copies the pickup.zip, error.txt, and session.log
�les to the Unix tipper/Chile directory. As described above, pickup.zip is
an archive of all of the recent radiometer data. Session.log is the log �le
generated by procomm. Error.txt is a
ag �le, if it exists, Cdata.csh knows
that there was a problem with the data transfer. Finally, exitswin ends the
SoftWindows session.

TRACE ON

TRANS ``ATS8=4!''

;TRANS ``ATF4!''

PAUSE 3

TRANS ``ATF8!''

PAUSE 3

TRANS ``ATS7=120!''

PAUSE 3

TRANS ``ATM0!''

PAUSE 3

;ASSIGN S9 ``ATDT!''

;ASSIGN S9 ``ATDT!''

ASSIGN S9 ``ATDT!''

;ASSIGN S9 ``ATDT!''

;ASSIGN S9 ``ATDT!''

;ASSIGN S9 ``ATDT!''

;ASSIGN S9 ``ATDT!''

;ASSIGN S9 ``ATDT!''

TRANS S9

DOS ``log Try1: Dialing >> session.log''

WAITFOR ``CONNECT'' 120

IF NOT WAITFOR

GOTO TRY2

ENDIF

DOS ``log Connection Established >> session.log''

PAUSE 2

40

WAITFOR ``Use Close-up (y/n)?''

IF NOT WAITFOR

GOTO TRY2

ENDIF

TRANS ``n''

MESSAGE ``n''

WAITFOR ``Begin Transmission?''

IF NOT WAITFOR

GOTO TRY2

ENDIF

TRANS ``go''

MESSAGE ``go''

DOS ``dl.bat''

WAITFOR ``Transmission Ok?''

ISFILE ``error.txt''

IF SUCCESS

TRANS ``n''

MESSAGE ``n''

GOTO TRY2

ELSE

TRANS ``y''

MESSAGE ``y''

DOS ``log Successful Transmission Acknowledged >> session.log''

ENDIF

WAITFOR ``Hangup''

HANGUP

DOS ``log Hangup >> session.log''

QUIT

TRY2:

HANGUP

DOS ``log Hangup >> session.log''

TRANS S9

DOS ``log Try2: Dialing >> session.log''

WAITFOR ``CONNECT'' 120

IF NOT WAITFOR

GOTO TRY3

ENDIF

DOS ``log Connection Established >> session.log''

41

WAITFOR ``Use Close-up (y/n)?''

IF NOT WAITFOR

GOTO TRY3

ENDIF

TRANS ``n''

MESSAGE ``n''

WAITFOR ``Begin Transmission?''

IF NOT WAITFOR

GOTO TRY3

ENDIF

TRANS ``go''

MESSAGE ``go''

DOS ``dl.bat''

WAITFOR ``Transmission Ok?''

ISFILE ``error.txt''

IF SUCCESS

TRANS ``n''

MESSAGE ``n''

GOTO TRY3

ELSE

TRANS ``y''

MESSAGE ``y''

DOS ``log Successful Transmission Acknowledged >> session.log''

ENDIF

WAITFOR ``Hangup''

HANGUP

DOS ``log Hangup >> session.log''

QUIT

TRY3:

HANGUP

DOS ``log Hangup >> session.log''

TRANS S9

DOS ``log Try3: Dialing >> session.log''

WAITFOR ``CONNECT'' 120

IF NOT WAITFOR

GOTO BAD

ENDIF

DOS ``log Connection Established >> session.log''

42

WAITFOR ``Use Close-up (y/n)?''

IF NOT WAITFOR

GOTO BAD

ENDIF

TRANS ``n''

MESSAGE ``n''

WAITFOR ``Begin Transmission?''

IF NOT WAITFOR

GOTO BAD

ENDIF

TRANS ``go''

MESSAGE ``go''

DOS ``dl.bat''

WAITFOR ``Transmission Ok?''

ISFILE ``error.txt''

IF SUCCESS

TRANS ``n''

MESSAGE ``n''

GOTO BAD

ELSE

TRANS ``y''

MESSAGE ``y''

DOS ``log Successful Transmission Acknowledged >> session.log''

ENDIF

WAITFOR ``Hangup''

HANGUP

DOS ``log Hangup >> session.log''

QUIT

BAD:

HANGUP

DOS ``log Hangup >> session.log''

ISFILE ``pickup.zip''

IF SUCCESS

DOS ``log Transfer Failed: Some data recovered''

ELSE

DOS ``log Transfer Failed: No data recovered''

ENDIF

QUIT

43

6.3.2 Cplots.csh

Cplots.csh reads the newdat.log, newmon.log, newout.log, newtxt.log, and
newwnd.log �les created by Cdata.csh and creates a plot of the data for
each date listed in each log �le. Each plot is created by a call to one of
the following scripts: tauplot.csh for opacity data, monplot.csh for monitor
data, txtplot.csh for phase stability data, wndplot.csh for wind speed data,
and wdrplot.csh for wind direction data. Each of these scripts are described
in section 6.6. The giftrans program is used to make the background of each
plot transparent and then each plot is copied to public html/tipper, where
monitor.csh will incorporate it into the Tipper Monitor Data Web Page.

A complete listing of Cplots.csh is given in appendix J.

6.3.3 MKdata.csh

MKdata.csh is no longer in use, but it is worth mentioning as an exam-
ple. Mkdata.csh used to perform the same tasks as Cdata.csh except that
it retrieved data from the Mauna Kea MMA site. There are two main dif-
ferences between the two scripts. First, MKdata.csh uses ftp to retrieve its
data. When ftp is given an address, it �rst checks for a .netrc �le in the
user's home directory. If the .netrc �le exists, ftp will look for an entry for
the given address. If such an entry exists, it will use the listed login name
and password to log onto the system. Furthermore, if a macro called \init"
is de�ned for that host, ftp will execute that macro. This allows ftp sessions
to be completely automated. An example of a .netrc �le appears below:

machine tipper.vlba.nrao.edu login mma password iswtoantsfo

macdef init

type binary

cd pickup

get pickup.zip

del pickup.zip

bye

machine ftp.aoc.nrao.edu login anonymous password sfoster@heineken.tuc.nrao.edu

macdef init

cd pub/sfoster

mget *.wea

bye

44

Second, MKdata.csh retrieves Mauna Kea weather data from the AOC
in Socorro. Unlike Chajnantor, the MMA does not have its own weather
station on the Mauna Kea site. Instead, we use the data available from the
VLBA weather station. The MKweather.csh shell script running in Socorro
reads the Mauna Kea weather data from the VLBA monitor data and stores
it in an ftp directory for pickup. This extra data retrieval step accounts for
the second .netrc entry in the above example.

A complete listing of MKdata.csh is available in appendix K.

6.3.4 MKwdata.csh

When the Mauna Kea site testing project was discontinued, we, nonetheless,
continued to record weather data for the site. The MKwdata.csh script is a
stripped down version of MKdata.csh which only retrieves the weather data
from the AOC in Socorro. A complete listing is available in appendix L.

6.3.5 MKplots.csh

MKplots.csh performs the same function as Cplots.csh. This script is no
longer in use. Although we still record weather station data for Mauna Kea,
no plots are generated. A full listing is available in appendix M

6.3.6 met.csh

The met.csh script was originally written by Tony Beasley and later modi�ed
by Scott Foster. It uses a text-only world wide web browser called lynx to
retrieve GOES-8 images of South America from the ESO web pages. The
data is written to the tipper/Chile/satpics/yymm directory where \yymm"
is the year and month. This script is run every three hours.

For the past several months, the ESO web pages have been very unreli-
able. As a result, the script often fails to recover data. Unfortunately, the
script does not handle this error condition. The only way to �nd out if a
data retrieval failed is to check the satpics directories for short (< 200byte)
image �les. However, the script still recovers enough to be of use. A full
listing appears below.

#!/bin/csh

Script to automatically pull ESO Chilean meteorology data

to specified directory, naming files using UT access times.

Lynx exists on Sun systems at AOC.

45

#

V1.0 BEASLEY 950502

Archive location; modify as appropriate

set ARCHIVE=$work/tipper/Chile/satpics

Desired images

set

URL1=''http://http.hq.eso.org/garching-info/computing/weatherdir/chile_meteo.

jpeg''

set

URL2=''http://http.hq.eso.org/garching-info/computing/weatherdir/chile_over.j

peg''

File names

set datadir = `date -u +%y%m`

if (! -e $ARCHIVE/$datadir) mkdir $ARCHIVE/$datadir

set FILE1=''$ARCHIVE/$datadir/`date -u +%y%m%d_%H%M`.jpeg''

set FILE2=''$ARCHIVE/$datadir/`date -u +%y%m%d_%H%M`_mosaic.jpeg''

Get the images

lynx -source -force_html $URL1 > $FILE1

lynx -source -force_html $URL2 > $FILE2

6.3.7 monitor.csh

The monitor.csh (see appendix N for a complete listing) resides in the pub-
lic html/tipper directory. This script takes the data plots produced by
Cplots.csh and MKplots.csh, deletes all but the seven most recent days
worth of data, and incorporates the rest into an HTML document acces-
sible by the World Wide Web. This web page can then be accessed by
anyone who needs to monitor the raw data, the radiometer performance, or
the power system on the Chajnantor site.

6.3.8 localbackup.csh

A few months ago, NRAO-Tucson set aside roughly 50MB of disk space
per user for the purpose of backing up high priority data. Every night, a
shell script reads the .localbackup �le in each user's home directory and

46

copies the listed �les to the backup disk. We use this feature for any MMA
site testing data which has yet to be backed up on tape. Unfortunately,
the MMA site testing program is capable of producing a large number of
small �les, scattered among a number of di�erent directories. This can cause
problems for the localbackup program. As a result, the MMA site testing
.localbackup �le (presently ~ sfoster/.localbackup) contains only one �le
name: ~ sfoster/localbackup.tar.Z. The localbackup.csh script produces this
data �le once per day, a few hours before the system localbackup program
executes.

#!/bin/csh -f

set tmp = tmp$$

if (! -e .timestamp) then

echo Error: Unable to find timestamp file

exit(1)

endif

if (-e localbackup.tar.Z) rm localbackup.tar.Z

find ~sfoster/tipper/Chile/archive -newer .timestamp -type f -print >> $tmp.1

find ~sfoster/tipper/Chile/rawdata -newer .timestamp -type f -print >> $tmp.1

find ~sfoster/tipper/Chile/rawarchive -newer .timestamp -type f -print >> $tmp.1

find ~sfoster/tipper/MaunaKea/archive -newer .timestamp -type f -print >> $tmp.1

find ~sfoster/tipper/MaunaKea/rawdata -newer .timestamp -type f -print >> $tmp.1

find ~sfoster/tipper/MaunaKea/rawarchive -newer .timestamp -type f -print >> $tmp.1

tar -cf localbackup.tar -I $tmp.1

compress localbackup.tar

rm $tmp.*

The localbackup.csh script uses the �nd command to search the MMA
site testing data directories for �les which are newer than the .timestamp
�le contained in the home directory. A temporary �le holds the list of new
data �les. The tar command then archives all of these data �les into one
tar �le, which is compressed to save disk space.

Note: When the disk containing the MMA site testing data is backed
up, the .timestamp �le should be touched. If this isn't done, the local-
backup.tar.Z �le will eventually exceed the 50MB size limit.

47

6.3.9 MKweather.csh

Unlike the other scripts described in this section, MKweather.csh runs in
Socorro, where it has access to the VLBA monitor data. The MKweather.csh
script calls sara, a VLBA program which accesses the monitor data. The
Mauna Kea weather data for the current month and previous month is
extracted and stored in a data �le for each day's worth of data. These
data �les are then made available by anonymous ftp for MKdata.csh or
MKwdata.csh in the pub/sfoster directory.

See appendix O for a complete listing.

6.4 Weekly Shell Scripts

Two scripts run on a weekly basis. They are the rawdata.csh scripts in
the Chile directory and the MaunaKea directory. Both scripts are quite
similar, and the Mauna Kea script is no longer in use, so we will restirct our
discussion to the Chile rawdata.csh script.

#!/bin/csh

echo -n ``Chile Automatic Data Archiving: Started ``

date

set tmp = tmp$$

cd $work/tipper/Chile

set f = `date +%y%m%d`C

zip -D $f.zip rawdata/* >& /dev/null

foreach rf (rawdata/*)

set yymm = `echo $rf:t | awk '{printf(``%s'',substr($1,1,4))}'`

if(! -e rawarchive/$yymm) mkdir rawarchive/$yymm

mv $rf rawarchive/$yymm

end

mv $f.zip ~mma/tipper

if (! -e ~mma/tipper/$f.zip) then

echo Error: Archive file not created.

exit 1;

endif

echo Hello Joanne, > $tmp.1

echo ``'' >> $tmp.1

48

echo The file, $f.zip, has been placed in the tipper directory on >>

$tmp.1

echo heineken and is ready to be picked up. >> $tmp.1

echo ``'' >> $tmp.1

echo Scott >> $tmp.1

/usr/ucb/mail -s ``New Tipper Data Avilable'' jnance < $tmp.1

rm $tmp.*

echo -n ``Chile Automatic Data Archiving: Finished ``

date

Every Monday monring, the rawdata.csh script takes any .dat and .out
�les stored in the rawdata directory by Cdata.csh and calls zip (see appendix
F for documentation) to bundle these �les into a single .zip �le. This .zip �le
is copied to the tipper subdirectory of the mma home directory. An e-mail
message is then sent to Joanne Nance in Charlottesville, who will retrieve
the data, do her own processing, and archive it.

6.5 Monthly Shell Scripts

There is only one monthly shell script, cleanup.csh. A listing appears below.

#!/bin/csh

cd /home/dietcoke/sfoster/tipper

echo -n ``Monthly zip archive directory cleanup: Started ``

date

set zippath = ~mma/tipper

set yy = `date +%y`

set mm = `date +%m`

set old = `echo $yy $mm | awk -f cleanup.awk`

rm $zippath/$old*.zip

echo ``Monthly zip archive directory cleanup: Removing all zip files from $old''

echo -n ``Monthly zip archive directory cleanup: Finished ``

date

49

On the �rst of every month, the cleanup.csh script removes all .zip �les
from \the month before last." This is done solely to conserve disk space.

6.6 Incidental Shell Scripts

There are a number of shell scripts which are run on an \as needed" basis.
They are summarized in table 7.

Script Fucntion

tauplot.csh Creates Opacity Plots
monplot.csh Creates Monitor Plots
txtplot.csh Creates Phase Stability Plots
wndplot.csh Created Wind Speed Plots
wdrplot.csh Creates Wind Direction Plots
hist.csh .ps Histogram Creation
time.csh Creates Time Series Plots
Cdb.csh Database update

Table 7: Summary of Incidental Shell Scripts.

A listing of the tipper/Chile directory will reveal many other shell scripts.
Some of these are special purpose scripts, used once, then forgotten. Others
are \subroutine" scripts. They are called by other shell scripts. Use caution
when deleting a shell script that you think is unused.

6.6.1 tauplot.csh, monplot.csh, txtplot.csh, wndplot.csh, and wdr-

plot.csh

The tauplot.csh, monplot.csh, txtplot.csh, wndplot.csh, and wdrplot.csh
scripts produce plots of opacity and weather vs. time, radiometer moni-
tor data vs time, phase stability data vs. time, wind speed data vs. time,
and wind direction data vs. time respectively for a given date. Each script
must be run from either tipper/Chile or tipper/MaunaKea as appropriate.
Each script takes a date (in the yymmdd format) as an argument as well as
an optional pgplot device name. If no device name is speci�ed, /ps (or /vps
for monplot.csh) is assumed and the output is directed to the printer. These
scripts are also called by Cplots.csh and MKplots.csh with either /gif or /vgif

50

as device names). Listings of these scripts are available in appendicies P -
T.

6.6.2 hist.csh

The hist.csh script generates a postscript plot with two panels. The top
panel contains a histogram distribution of a data set. The optional lower
panel contains a cumlative distribution function with quartiles. The script
has a number of options, which are displayed if the user types the name of
the script.

Usage: hist.csh dbase col xmin xmax hbins cdfflag upflag xlabel title outfile

The \dbase" parameter is the path and �le name of the database �le
which supplies the data. The \col" parameter is the column number. The
\xmin" and \xmax" parameters specify the limits of the x-axis. The number
of bins used in the histogram are given by \hbins". The two
ags, \cd�ag"
and \up
ag" determine whether to include a cumulative distribution func-
tion and the percentage of time that the instrument was running. The next
two parameters, \xlabel" and \title" provide title strings for the histogram
x-axis and the plot itself. Remember to quote these strings if they contain
more than one word. Finally, \out�le" is the name of the output �le.

Both hist.csh and gifhist.csh (which produces a gif version of the same
plot) are called by summary.csh, which is called in turn by Cdb.csh, however,
they are often useful on their own. A complete listing of hist.csh is given
in appendix U. A listing of gifhist.csh is not included because it is quite
similar to hist.csh.

6.6.3 time.csh

The time.csh script is conceptually similar to hist.csh. However, this script
produces a plot of a given quantity versus time. Most of the parameters
are the same. However, it is now possible to specify the minimum and
maximum values for the y-axis. If these values are not present, the plot will
be automatically scaled to show all of the data.

Usage: time.csh dbase xcol ycol [ymin ymax] xlabel ylabel title outfile

There is no giftime.csh, as the time series data is not published on the
world wide web. The time.csh script, like hist.csh, is called from sum-
mary.csh, but is sometimes useful by itself. A complete listing is given
in appendix V.

51

6.6.4 Cdb.csh

The Cdb.csh shell script updates the Chajnantor database �les. Cdb.csh
�rst creates a Make�le, then runs the make utility. For each month of
data, make checks to see if any of the �les in the archive directory have
been modi�ed. When make �nds a month with new data, it calls two
scripts, month.csh and summary.csh. The month.csh script creates opac-
ity, weather, and a merged databases for a given month and writes them
to the tipper/Chile/database directory. The summary.csh script creates the
various data summary plots and writes them to the tipper/Chile/�gures di-
rectory. Once the databases for each month are updated, make calls the
dbcat.csh script to concatonate the data from each month to create a full
database.

A similar script called MKdb.csh, no longer in use, was used for the
Mauna Kea data.

A complete listing of Cdb.csh is available in appendix W.

6.7 World Wide Web Shell Scripts

The last two scripts we will describe in this section actually belong to the
mma account. Both of these scripts run out of the /home/heineken/ftp/observerinfo/mma/sites
directory and are used to update the MMA Site Testing world wide web page.

The �rst of these scripts, tipper.csh, simply copies all of the gif �les in the
tipper/Chile/�gures and tipper/MaunaKea/�gures directories to /home/heineken/ftp/observerinfo/mm
and all of the postscript �les in the �gures directories to the MMA Site Test-
ing ftp directory, /home/heineken/ftp/mma/sites. However, it does not
copy any �gures from the current month, on the assumption that these �g-
ures will be incomplete. A listing of this script is available in appendix
X.

The second script, mksites.csh, creates the actual HTML �les which
comprise the MMA site testing world wide web pages. The mksites.csh
script taylors the HTML �les to the plots present in the sites directory, so
it is important that no stray �les be present. A complete listing of the
mksites.csh script may be found in appendix Y.

The user should \su mma" in order to run these scripts.

6.8 Procedures

Despite the apparent complexity of the scripts presented in the previous
sections, monitoring and maintaining the radiometer data is quite simple if

52

these procedures are followed.
On a daily (weekday) basis:

� Read any e-mail reports from shell scripts. Track down errors if nec-
cessary. If a communications attempt fails, try to determine what
went wrong, but don't panic unless it fails for three or more consecu-
tive days. Any other shell script error should be investigated. Note:
if a data transfer fails, the subsequent plotting script will also fail.

� Use a World Wide Web browser to examine the radiometer monitor
data. Watch for unusual values in each of the readbacks (this will re-
quire some experience). Watch for
at lines on all readbacks (bad A/D
card or other problem). Watch the opacity data for large discrepencies
between the tipping scan opacity and the zenith opacity (an indication
of a calibration problem).

At the end of each month:

� Manually examine all of the opacity data for obvious errors. Large �t
errors, unusual gains, sudden jumps in opacity readings, and negative
opacities are all examples of bad data. Delete any bad data found.

� Use the check program to make sure the time entries in the dat and
mon �les are ok. Fix if neccessary. The two most common problems
are with the clock rolling over after midnight (�x: set to 24.000) and
repeated data (�x: delete redundant data points).

� Run Cdb.csh to update the databases and �gures.

� Log in as mma. Run tipper.csh followed by mksites.csh.

� Use a World Wide Web browser to check the new �gures for accuracy.
Sometimes you will miss bad data points.

� Back up the hard disk.

� Touch the .timestamp �le.

53

A Satellite Telephone Dialing Instructions

54

55

B Opacity Measurement

The following section is an excerpt from the Radiometer Error Analysis
memo. In this section, we review the radiometer operation and measure-
ments. In the next section, we review the algorithms used to derive the
opacity from these measurements. Much of the information in these two
sections was originally presented bye McKinnon (1987) and Liu (1987).

B.1 Measurements

The sky signal is re
ected o� of an external parabolic mirror through a
small window in the radiometer enclosure. A chopper wheel positioned
between the primary and secondary mirrors alternately selects signals from
the primary mirror, a reference load (often referred to as the \cold load")
(45ÆC), and a hot load (65ÆC). The selected signal then passes through a
lens into the mixer feed horn. The signal is mixed with a local oscillator
signal generated by a frequency tripled 75 GHz Gunn oscillator. The 1.5
GHz IF is then passed through two ampli�er stages and a bandpass �lter
before arriving at the square law detector.

The radiometer measurement of the sky brightness temperature (Ts) is
given by

Ts = Tr + (1� �)T1 + �Ta(1� e�A�) + T3K�e
�A� (1)

where

� Tr = Receiver Temperature

� � = coupling eÆciency

� T1 = temperature at which losses are terminated

� Ta = mean temperature of the atmosphere

56

� � = Zenith Opacity

� A = airmass

� T3K = temperature of the microwave background

Likewise, the measured temperatures of the reference (cold) load (Tc) and
the hot load (Th) are given by

Tc = Tr + (1� �)T1 + �Tc (2)

Th = Tr + (1� �)T1 + �Th (3)

The square law detector and its associated electronics returns a voltage
proportional to the di�erence between the reference temperature and the sky
temperature, where the gain constant, g, is the constant of proportionality.
Multiplying equations 1 and 2 by g and subtracting equation 1 from equation
2 gives:

Vcs = G(Tc � Ta) + G(Ta � T3K)e
�A� + Vdo;cs (4)

where G = �g is the system gain and Vdo;cs is the detector o�set voltage.
The radiometer is designed such that Vdo;cs = 0. However, in practice, there
is a small detector o�set of the order of 5 - 20 millivolts.

The square law detector also returns the di�erence between the bright-
ness temperatures of the reference load and the hot load. Multiplying equa-
tions 2 and 3 by g and subtracting gives:

Vch = G(Tc � Th) + Vdo;ch (5)

where Vdo;ch is another detector voltage o�set, which is independent of Vdo;cs.

B.2 Solving for the Opacity

B.2.1 Gain Calibration

The radiometer returns the two voltages given in equations 4 and 5 to the
radiometer control computer. Under the assumption that Vdo;ch = 0, and
using temperature measurements from sensors on the hot and cold loads,
equation 5 is solved for the radiometer system gain (G). However, this cal-
culated gain is not quite correct. The hot load and the cold load temperature
sensors are embedded in their respective loads. The radiometer, however,

57

sees the temperature at the surface of each load. A temperature gradient
in either load will cause an error in the gain measurement. To compensate
for this error, we apply a gain correction factor (colorfully referred to as
the \gain fudge factor"). This gain correction factor is typically less than a
5% and is set in such a way that the zenith opacity measurement and the
tipping scan opacity measurement agree.

B.2.2 Some Initial Approximations

Once the gain is calculated, we can turn to the solution of equation 4 for the
opacity. We currently use three techniques to solve for the opacity (�). All
three of these techniques require a number of approximations. First, we as-
sume that the physical temperature of the atmosphere follows an adiabatic
lapse rate weighted by the exponential distribution of water vapor (McKin-
non, 1987). For a lapse rate of 9:8ÆK=km and a scale height of 1:8km, we
�nd that Ta � Tamb�17

ÆK, where Tamb is the ambient temperature. Second,
we assume that the 3ÆK background, T3K , is negligably small compared to
Ta. Finally, we assume that Vdo;cs is also negligably small. Application of
these approximations results in the following, simpli�ed version of equation
4.

Vcs = G(Tc � Ta) + GTae
�A� (6)

We will examine the validity of these assumptions in the next section.

B.2.3 Direct Zenith Opacity Measurement

The �rst technique for calculating the opacity is the most straightforward.
It requires only a single measurement of the sky at the zenith (although
in practice, we average ten measurements to reduce random errors) and a
direct inversion of equation 6.

� = �ln(
Vcs
GTa

�
(Tc � Ta)

Ta
) (7)

(Note, this equation is a correction of an error in MMA memo #40). As we
shall see in the next section, this technique, while simple, is the least robust
of the three. However, the other two techniques depend on some additional
assumptions. In conditions where these additional assumptions break down
(speci�cally, at high opacities), this technique is still accurate enough to give
us a good indication of the opacity.

58

B.2.4 Tipping Scan Opacity Measurement

If we rewrite equation 6, taking the natural logarithm, we �nd that

ln(Vcs �G(Tc � Ta)) = ln(GTa)�A� (8)

If we take airmass as the independent variable, equation 8 is the equation
of a straight line with a slope of �� .

The second technique for calculating the opacity takes advantage of equa-
tion 8 by having the radiometer perform a tipping scan. During a tipping
scan, the primary mirror of the radiometer tips in order to make measure-
ments at more than one airmass. In practice, we average ten measurements
(again, to reduce random errors) at each of eleven air masses.

If we assume that the opacity does not vary signi�cantly with time during
a tipping scan and that it varies with elevation only in proportion to the
airmass, we can perform a least squares �t to ln(Vcs�G(Tc�Ta)). We could
simply take the slope returned by the least squares �t and stop. However,
the least squares �t returns the y-intercept as well as the slope. We use the
value of the y-intercept to improve our estimate of Ta. We then re-�t the
line, and take the second calculation of slope to determine the opacity.

It should be noted that the assumption that the opacity not vary sig-
ni�cantly temporally or spatially tends to break down under high opacity
conditions (� > 0:5).

B.2.5 Gain Corrected Tipping Scan Opacity Measurement

The third technique was developed to compensate for problems with the gain
calibration. If the gain is not correctly measured, but is still stable over the
tipping scan, it will result in an incorrect opacity such that equation 6 is
still satis�ed. Therefore, we can derive a gain correction factor as follows:

G(Tc � Ta) + GTae
�A� = G�(Tc � Ta) +G�Tae

�A�� (9)

where

� G is the correct gain

� � is the correct opacity

� G� is the inaccurate gain

� �� is the inaccurate opacity

59

Solving for G
G�

yields

G

G�

=
(Tc � Ta) + Tae

�A��

(Tc � Ta) + Tae�A�
(10)

By taking the zenith opacity to be the incorrect opacity, and the tipping
scan opacity to be a �rst guess at the correct opacity, we can then apply the
gain correction to calculate a new gain. We use the corrected gain with the
second technique to obtain a new opacity. Since the tipping scan opacity
was only a �rst guess, we can now repeat the process, using the tipping scan
opacity as the incorrect value and the newly calculated opacity as the correct
value. If we iterate, the gain correction factor quickly approaches 1. The 20
iterations used in the radiometer control code are more than adequate.

B.2.6 The Local Oscillator Fudge Factor

In the original radiometer design, the material used in the window between
the primary mirror and the chopper wheel was perpendicular to the direction
of propagation of the radiation. The radiometer is designed such that half of
the local oscillator power is radiated out of the mixed cavity, re
ected o� of
the secondary mirror, and out of the radiometer enclosure. However, some
of the local oscillator signal would re
ect back o� of the window and into the
radiometer. This caused the sky to appear to have a higher brightness tem-
perature than it really did. To compensate, a constant, known as the local
oscillator fudge factor, was subtracted from the sky signal. This adjustment
was not implemented correctly in the direct zenith opacity measurement.

The radiometer window has since been redesigned. The local oscillator
fudge factor is probably no longer needed, The software con�guration �le
still carries a 1ÆK correction, however. Simulations (explained in the next
section) show that such a small correction does not have a signi�cant impact
on the opacity measurements.

C CTIP96.PAS

{10Oct89 C T I P 8 8 . P A S

A hybrid program derived from ARTEST1 ,BIGFILE, and PHITEST

which automates the tipper built in Charlottesville. }

PROGRAM CTIP88(tau_file, mon_file, header_file, phase_file);

60

{$N+} {Turns on the 8087 math coprocessor}

{$M 65520,0,655360} (* Memory allocation for the stack and the heap *)

uses Dos, Crt ;

LABEL alpha, beta, gamma, delta, psi;

CONST

{constants for program operation}

prog : STRING[14] = 'CTIP88a';

version : STRING[10] = '4.2'; {converted to Turbo 4.0 and

uses phitest as a procedure}

{added REGULAR & default}

{version 3.1 includes communications revisions made by J. Holliman (7/87)}

{version 4.1 is Turbo 4.0 compatible and does a phase stability scan}

{revised by J. Ogle (2/89)}

{version 4.2 cleaned up logic problems with the phitest procedures and

added calibration runs to the phitests. revised by S. Foster (6/89)}

revdate : STRING[10] = '890627';

hardversion : STRING[80] = ' ';

softversion : STRING[80] = ' ';

fil : string[15] = 'C:fudge.pas';

phicount : string[15] = 'c:phicount.txt';

{ Gfudge : SINGLE = 0.975;

Tfudge : SINGLE = 21;}

phitime : string[15] = 'C:phitime.txt' ; {file of times for phitest}

phi_num_reads : INTEGER = 7; {No. points averaged in PROCEDURE PHITEST}

num_reads : INTEGER = 10; {No. points averaged at each airmass}

num_airs : INTEGER = 11; {No. airmasses observed per scan}

tauint : INTEGER = 10; {Minutes between start of successive scans}

monint : INTEGER = 10;{Minutes between monitor records}

default : SINGLE = 0.01;

61

check : BOOLEAN = false;

{When check is true, CTIP88 generates its own opacity and monitor data.}

{The opacity data gives a perfectly straight line with a slope of -1,}

{i.e. tau = 1,fit = -1, and rms = 0. check is false in normal operations}

{constants for I/O, etc.}

prefix : BYTE = $16;

odd = $0b; even = $1b;

expected_length : BYTE = 5;

byte_count : INTEGER = 2;

ioctl_input : INTEGER = 2;

file_handle : INTEGER = 3; {standard aux device}

buf_count : INTEGER = 0;

ret_flag : INTEGER = 1;

set_ascii : INTEGER = 2;

set_binary : INTEGER = 3;

flush : INTEGER = 4;

com1 : INTEGER = 0;

com2 : INTEGER = 1;

block_length : BYTE = 255;

state_adr : BYTE = $80;

gozen : BYTE = $01;

cw : BYTE = $04;

step : BYTE = $02;

gozero : BYTE = $FE;

cwzero : BYTE = $FB;

stzero : BYTE = $FD;

TYPE

WHERETOSTART = BOOLEAN;

string16 = STRING[16];

string9 = STRING[9];

62

string20 = STRING[20];

phi_array = ARRAY [1..1024] OF single;

araw_data = ARRAY [1..16] of single;

aproc_data = ARRAY [1..16] of single;

taproc_data = ARRAY [1..16] of single;

PHIREC = RECORD

W2,X2,Y2,T2 : PHI_ARRAY ;

END ;

PHIDATA = FILE OF PHIREC ;

tau_array = ARRAY [0..10] OF SINGLE;

mon_array = ARRAY [1..16] OF SINGLE;

rec = RECORD

time1 : STRING[4]; {UT in HHMM format}

tau1 : SINGLE; {tipping scan opacity}

sigmatau1 : SINGLE; {tipping scan rms}

tauz1 : SINGLE; {Zenith Opacity}

Vz1 : SINGLE; {Zenith mean voltage}

GainZ1 : SINGLE; {Zenith gain correction}

sigmaVz1 : SINGLE; {Zenith rms voltage measurement}

gain1 : SINGLE; {assumed gain}

tauI1 : SINGLE; {iterated opacity}

sigtauI1 : SINGLE; {iterated opacity rms}

gainI1 : SINGLE; {iterated gain}

Tamb1 : SINGLE; {Ambient Temperature}

{Double check calculation of tamb!!! Does weird gain calc alter this?}

Tc : SINGLE; {Cold load temperature}

Th : SINGLE; {Hot load temperature}

x1,y1,z1,G1 : tau_array; {airmass, ln(vsd), rms(vsd)}

END;

datafile = FILE OF rec;

rec2 = RECORD

time1 : STRING[4]; {UT in HHMM format}

63

m1 : mon_array; {Analog monitor data}

dmon2 : INTEGER; {Digital monitor word}

END;

monfile = FILE OF rec2;

PIECE = STRING[20] ;

VAR

{variables for program operation}

ISPHITEST : BOOLEAN ; {is phitest on}

AUX,data1file : TEXT ; {treat AUX like a textfile}

data2file : TEXT ;

STORBOOL : FILE OF WHERETOSTART; {IS CVTIPPER BEING EXECUTED

AFTER COMING FROM SCOM?}

WHATISIT : WHERETOSTART;

NEWI : INTEGER;

GLOB1 : FILE OF INTEGER;

GLOB2 : FILE OF SINGLE;

GLOB3 : FILE OF BOOLEAN;

GLOB4 : FILE OF BYTE;

GLOB5 : FILE OF PIECE;

fudge_file : text;

phitest_file : text;

TIPPING : BOOLEAN;

PHASE_FILE : PHIDATA ;

PHASEFILE : piece;

fil1,fil2 : piece;

sig1,hot1,ref1,cold1 : PHI_ARRAY ;

interval : INTEGER ;

space,num_avg,TD1,TD2 : INTEGER ;

num_points,run : INTEGER ;

time1,time2,time3 : INTEGER ;

negtime,checktime,number : INTEGER ;

lapse : array[1..7] of integer ;

sigref,hotref,hotmref,coldref : SINGLE ;

air,gain : SINGLE; {airmass}

64

tau_file : datafile; {opacity data file}

taufile : PIECE; {name of tau_file}

mon_file : monfile; {monitor data file}

monitorfile : PIECE; {name of mon_file}

header_file : TEXT; {ASCII file named STATUS.TXT}

flag : BOOLEAN; {worst-level flag}

zac,coldtemp : SINGLE; {zenith angle in DEGREES}

i,n,p,j,thismin : INTEGER;

tau : SINGLE; {opacity}

slope,int : SINGLE; {intercept, corr.coeff.}

xx,yy,zz : tau_array; {airmass, ln(vsd), rms}

G : tau_array;

mm : mon_array; {analog monitors}

dmon, adr : INTEGER; {dig. monitor, adr. of flag}

tautime,montime : INTEGER; {set interval timings}

startdate : PIECE;

achec,posit,stop : BOOLEAN;

raw_data : araw_data;

proc_data : aproc_data;

tproc_data : taproc_data;

b : byte;

airstep : integer;

ambtemp,ix,iy,Tamb : SINGLE;

sumx,sumy,sumw : SINGLE;

w,sumxy,sumxsq : SINGLE;

Tat,Tat1,gain2 : SINGLE;

adjust,adjust1 : SINGLE;

sigmatau,tauz : SINGLE;

jy,jx,sigmasq : SINGLE;

Gfudge,Tfudge : single;

LOfudge : single;

isdat,isphi : piece;

phifreq : single;

calfreq : integer;

phicount_file : text;

calibrate : boolean;

decision : integer;

sitenum : char; {site number}

gfreq :integer;

65

count :integer;

gaintip,tautip,sigmatautip,tauz2,ambtemptip :single;

Vz,sigmaVz,GainZ,hottemp,Gcorr:SINGLE;

cf : single;

logfile:text;

{variables for I/O etc.}

ch : CHAR;

ioctl_value : INTEGER;

com_base : BYTE ABSOLUTE $40:4;

mon_flag : INTEGER;

address_hi : BYTE;

nadr,comvar : BYTE;

{ <- STDLIB1 / DAVID -> }

{includes support for both serial ports, using the installable device driver

AUXDRV.COM which must be specified in the CONFIG.SYS file}

{The serial port for the VLBA interface board is COM1 and is given the highest

priority for interrupts and is to be run at 9.6KB in binary mode. COM2 is

assigned the lowest priority and is to be used in ascii mode for talking to

whatever it is supposed to talk to.

COM1 must be at adr 3F8 and use irq4.

COM2 must be at adr 2F8 and use irq3.

These are the normal settings on all standard boards.}

{ IOCTL(flush,com1) and IOCTL(flush,com2) will clear the buffers.

IOCTL(buf_count,com1) is used to check how many chars have been rcvd.

IOCTL(ret_flag,com2) is used to see if there is one or more carriage

return in the buffer.}

{ Use SET_COM1 or SET_COM2 before reading from or writing to a serial port.}

procedure caldelay;

66

var

del,hour,minute,second,sec100:word;

sec1,sec2,et:real;

begin

gettime(hour,minute,second,sec100);

sec1:=3600*hour+60*minute+second+sec100/100;

delay(30000);

gettime(hour,minute,second,sec100);

sec2:=3600*hour+60*minute+second+sec100/100;

cf:=30/(sec2-sec1);

et:=sec2-sec1;

writeln('cf = ',cf:8:3,' Elapsed time = ',et:8:2,' sec');

end;

PROCEDURE SLEEP(ms: longint);

VAR

newdel:longint;

del:word;

BEGIN

newdel:=round(cf*ms);

while (newdel > 20000) do

begin

delay(20000);

newdel:=newdel-20000;

end;

del:=newdel;

delay(del);

END;

PROCEDURE IOCTL(function_nr,com_nr: INTEGER);

{

Ioctl communicates with the device driver COMDRV.COM which must

be specified in the Config.Sys file when the PC is booted.

function_nr specifies the sub_function, com_nr the com port.

com_nr = 0 for COM1; com_nr = 1 for COM2.

Ioctl(0,com_nr) is used to check how many chars have been rcvd.

67

Ioctl(1,com_nr) is used to see if there is one or more carriage

return in the buffer.

Ioctl(2,com_nr) sets the com port to ascii mode.

Ioctl(3,com_nr) sets the com port to binary mode.

Ioctl(4,com_nr) will clear the buffer.

}

CONST

DosFunc = $44 ; {DOS ioctl interrupt}

SubFunc = 2 ; {Subfunction READ}

NumBytes = 2 ; {No. bytes to be read}

FileHandle= 3 ; {3 is device AUX:}

VAR r: registers ; (*regpack; not supported by TURBO 4.0 *)

al,ah: BYTE;

BEGIN

ioctl_value:=(function_nr * 2) + com_nr;

{Load register fields for call to msdos function}

r.ds:=SEG(ioctl_value);

r.dx:=OFS(ioctl_value);

r.cx:=NumBytes;

al:=SubFunc ; ah:=DosFunc ;

r.ax:=(256*ah) + al;

r.bx:=file_handle;

msdos(r);

END; {of procedure IOCTL}

{$I STDLIB2.PAS}

PROCEDURE SET_COM1 ;

BEGIN com_base:=com1 ; {com1=0}

END {SetCom1} ;

PROCEDURE SENDBYTE (DATA : BYTE) ;

{Sends data to aux device}

BEGIN WRITE(AUX,CHAR(DATA)) ; END ;

PROCEDURE SET_COM2;

68

BEGIN com_base:=com2; END;

PROCEDURE WAIT_COM1;

BEGIN REPEAT UNTIL (port[$3fd] AND 64) = 64; {wait for tx buf empty}

END;

PROCEDURE SEND_PREFIX;

{sets even parity, sends prefix byte, sets odd parity}

{COM1 is the serial port being used}

BEGIN

set_com1;

wait_com1;

PORT[$3fb]:=even;

SENDBYTE(prefix) ;

wait_com1;

PORT[$3fb]:=odd;

END; {of procedure SEND_PREFIX}

PROCEDURE SEND_CMD(cmdadr,cmdata_hi,cmdata_lo:byte);

VAR i: byte; ch: CHAR; cmdadr_hi: byte;

BEGIN

cmdadr_hi := address_hi or $80;

REWRITE(AUX) ; {opens write file to aux}

ioctl(flush,com1); {make sure buffer is empty}

send_prefix; {send SYNC byte prefix}

set_com1; {calls set_com1 & prepares port}

Write(aux,char(cmdadr_hi)); {send address byte #1}

Write(aux,char(cmdadr)); {send address byte #2}

Write(aux,char(cmdata_hi)); {send data byte #1}

Write(aux,char(cmdata_lo)); {send data byte #2}

expected_length:=2;

repeat

begin

sleep(1);

69

IOCTL(buf_count,com1); {buf_count is const @ 0 & calls ioctl}

i := i +1;

end;

until ((ioctl_value >= expected_length) or (i = 10));

CLOSE(AUX) ; {closes write file to aux}

RESET(AUX) ; {opens aux file so data can be read from the tipper}

if ((i <= 10) AND (ioctl_value = expected_length)) then

for i := 1 to ioctl_value do

read(aux,ch); {reads ACK, DC1 in that order}

CLOSE(AUX) ; {This closes the aux file so it can be written or read from aga

in later}

END; {of procedure SEND_CMD}

{**}

PROCEDURE RECEIVE_DATA(monadr:byte; var digval: single; var brdnc: boolean);

VAR i:byte; monch: array[1..3] of char; value: integer ;

BEGIN

REWRITE(AUX) ; {opens write file to aux}

IOCTL(flush,com1); send_prefix; set_com1; {set up hardware for communication}

{this trio is in send_cmd}

Write(aux,char(address_hi)); {sends monit hi adres byte global: from MAIN}

Write(aux,char(monadr)); {send monit low address byte}

Write(aux,char($47)); Write(aux,char($48)); {required command bytes}

expected_length := 3;

i := 0;

CLOSE(AUX) ;

RESET(AUX) ;

REPEAT

70

BEGIN

sleep(1);

IOCTL(buf_count,com1);

i:=i+1;

END;

UNTIL ((ioctl_value >= expected_length) OR (i=10));

If ((i = 10) OR (ioctl_value <> expected_length)) then brdnc := true

else begin

brdnc := false;

For i:=1 to ioctl_value do

Read(aux,monch[i]); {reads ACK,MDH,MDL in that order}

value := swap(integer(monch[2])) + integer(monch[3]);

{combine MDH & MDL}

digval:= value*1.0 ; {this converts the negative integer into a

negative real, direct conversion in TURBO 4.0 gives a large positive

real number }

End;

CLOSE(AUX) ;

END;

PROCEDURE CONNECT_BOARD(var newbrd:boolean);

Begin

BAUD;

port[$20] := $c3;

IOCTL(set_binary,com1);

address_hi := 0;

End; {procedure connect_board}

PROCEDURE RESPONDING(brdnc: boolean);

Begin

Window(50,1,80,2);

gotoxy(1,1);

71

if brdnc then write('No response from board')

else clrscr;

End; {procedure responding}

PROCEDURE MONITOR_DATA(var raw_data:araw_data);

VAR nc:boolean; monadr:byte;

Begin

RECEIVE_DATA($00,raw_data[1],nc);

RESPONDING(nc);

for i:=1 to 15 do

RECEIVE_DATA(i,raw_data[i+1],nc);

End; {procedure monitor_data}

PROCEDURE PROCESS_DATA(raw_data: araw_data; var proc_data: aproc_data;

var tproc_data: taproc_data);

VAR b:byte;

Begin

For b := 1 to 16 Do

proc_data[b] := 5.000*(raw_data[b]/16); {converts to mvolts}

tproc_data[1] := proc_data[1]/20; {sig-ref (switched output)}

tproc_data[2] := proc_data[2]/200; {hot-ref (gain monitor)}

tproc_data[3] := proc_data[3]/2 + 5000; {ref (total power)}

tproc_data[4] := proc_data[4]/100; {ref temp}

tproc_data[5] := proc_data[5]/100; {hot temp}

tproc_data[6] := proc_data[6]/100; {ambient temp}

if (tproc_data[6]<-40) or (tproc_data[6]>40) then tproc_data[6]:=0;

{This is a safeguard against the tendency for the temperature probe

on the radiometer to break of malfunction}

tproc_data[7] := proc_data[7]/100; {chassis temp}

tproc_data[8] := proc_data[8]/-1000; {mixer current}

tproc_data[9] := proc_data[9]/-1000; {tripler current}

72

tproc_data[10] := proc_data[10]/10000; {gunn current}

tproc_data[11] := proc_data[11]/500; {supply voltage}

tproc_data[12] := proc_data[12]/50; {zenith angle}

tproc_data[13] := proc_data[13]/1000; {supply current}

tproc_data[14] := proc_data[14]/13.89; {wind direction}

tproc_data[15] := proc_data[15]/25; {wind speed}

tproc_data[16] := proc_data[16]/500; {weather station supply volts}

End; {procedure process_data}

PROCEDURE DIRECT; {sends command to determine direction of mirrror rotation}

{clockwise or counterclockwise}

Begin

if posit then begin {If posit is true, rotation direction is positive}

comvar := comvar and cwzero;

SEND_CMD(state_adr,0,comvar); {sends a zero(mirror rotates CCW)}

sleep(100);

end

else begin

comvar := comvar or cw;

SEND_CMD(state_adr,0,comvar); {sends a one(mirror rotates CW)}

end;

sleep(100); {allow time for command}

End; {procedure direct}

PROCEDURE GZEN; {sends command to change mirror orientation to zenith}

VAR y:integer;

Begin

zac := 0;

comvar := comvar or gozen;

SEND_CMD(state_adr,0,comvar); {GZ bit=1,command sent to go zenith}

sleep(100);

comvar := comvar and gozero;

SEND_CMD(state_adr,0,comvar); {GZ bit reset to 0}

sleep(16000); {time delay to allow mirror to travel to zenith}

End; {procedure GZEN}

73

PROCEDURE ELEVATE(astep:integer); {steps motor by 1.8 degree steps}

VAR q:integer;

BEGIN

for q := 1 to astep do begin

comvar := comvar or step;

SEND_CMD(state_adr,0,comvar); {sends command}

sleep(100);

comvar := comvar and stzero;

SEND_CMD(state_adr,0,comvar); {sends reset of zero}

sleep(100);

end;

END; {procedure ELEVATE}

PROCEDURE STEPBACK;

Begin

airstep := 39;

posit := false;

DIRECT;

ELEVATE(airstep);

sleep(1000);

{ GZEN;}

END; {procedure stepback}

PROCEDURE DISPLAY_DATA(proc_data: aproc_data; tproc_data:taproc_data);

VAR b:byte; a:integer;

Begin

Window(1,1,80,25);Highvideo;

b := 1;

For b := 1 to 16 do begin

a := b + 4;

74

gotoxy(22,a); write(proc_data[b]:8:2);

gotoxy(39,a); write(tproc_data[b]:9:3);

end;

b := 1;

End; {procdure display_data}

PROCEDURE SCREEN; {generates CRT heading for tipper data}

Begin

WINDOW(1,1,80,25);

CLRSCR ;

GOTOXY(1,20); WRITE('

');

gotoxy(4,1); write('ZENITH ANGLE = ');

gotoxy(4,3); write('# ITEM');

gotoxy(20,3); write(' mVOLTS');

gotoxy(41,3); write(' SCALED');

gotoxy(4,5); write('0) SIG-REF'); gotoxy(48,5); write('K');

gotoxy(4,6); write('1) HOT-REF'); gotoxy(48,6); write('K');

gotoxy(4,7); write('2) REF '); gotoxy(48,7); write('K');

gotoxy(4,8); write('3) REF TEMP'); gotoxy(48,8); write('C');

gotoxy(4,9); write('4) HOT TEMP'); gotoxy(48,9); write('C');

gotoxy(4,10); write('5) OUT TEMP'); gotoxy(48,10); write('C');

gotoxy(4,11); write('6) IN TEMP'); gotoxy(48,11); write('C');

gotoxy(4,12); write('7) MXR CUR'); gotoxy(48,12); write('mA');

gotoxy(4,13); write('8) TRIP CUR'); gotoxy(48,13); write('mA');

gotoxy(4,14); write('9) GUNN CUR'); gotoxy(48,14); write('A');

gotoxy(4,15); write('10) SUP VOLTS'); gotoxy(48,15); write('V');

gotoxy(4,16); write('11) ZEN ANG'); gotoxy(48,16); write('deg');

gotoxy(4,17); write('12) SUP CUR'); gotoxy(48,17); write('A');

gotoxy(4,18); write('13) WIND DIR'); gotoxy(48,18); write('deg');

gotoxy(4,19); write('14) SPEED'); gotoxy(48,19); write('mph');

gotoxy(4,20); write('15) WS SUP VOLTS'); gotoxy(48,20); write('V');

gotoxy(70,23);

End; {procedure SCREEN}

PROCEDURE START;

75

var open : byte;

Begin

SCREEN;

open := $04;

SEND_CMD(state_adr,0,open);

sleep(100); {allow time for command}

End; {procedure START}

FUNCTION EXIST(nameoffile: string20): BOOLEAN;

{TURBO manual p 96}

VAR

file1: FILE;

temp:boolean;

BEGIN

ASSIGN(file1, nameoffile);

{$I-}

RESET(file1);

{$I+}

temp:=(IOresult = 0);

if temp then close(file1);

exist:=temp;

END; {function EXIST}

FUNCTION WHATFILE(answer : boolean): string16; {gets next available file name}

VAR

t4: string[2];

t0: INTEGER;

BEGIN

t0:=0; t4:='00';

WHILE (answer and EXIST(CONCAT('c:\data\',date2,t4,'.tx',sitenum))) DO BEGIN

{if answer is true then phitest is activated and search for '.TXT' is needed}

{the truth table is correct if you short circuit the boolean expression}

76

t0:=t0+1;

STR(t0,t4);

WHILE LENGTH(t4) < 2 DO t4:=concat('0',t4);

END;

WHATFILE:=CONCAT('C:\DATA\',DATE2,t4);

END; {function whatfile}

FUNCTION WHATFILE2 : string16; {gets next available filename}

VAR

t4: string[2];

t0: INTEGER;

BEGIN

t0:=0; t4:='00';

WHILE (EXIST(concat('c:/data/',date2,t4,'.da',sitenum))) DO

BEGIN

t0:=t0+1;

STR(t0,t4);

WHILE LENGTH(t4) < 2 DO t4:=concat('0',t4);

END;

WHATFILE2:=CONCAT('c:\data\',date2,t4);

END; {function whatfile2}

PROCEDURE SAVE_MON(mm : mon_array; dmon : INTEGER);

VAR

mon_rec : rec2; {dmon is not used in cvtipper}

{dmon allows consistency when using monread}

BEGIN {monread reads monitoring data files}

with mon_rec DO

BEGIN

time1 := time;

m1 := mm;

dmon2 := dmon;

END; {* with *}

RESET(mon_file);

77

SEEK(mon_file,FILESIZE(mon_file));

WRITE(mon_file,mon_rec);

CLOSE(mon_file);

END; {procedure SAVE_MON}

PROCEDURE MON_CHECK(VAR mm:mon_array; VAR dmon:integer);

{mon_check sends the mirror to zenith and takes data}

Begin {which is stored in a monitor data file}

dmon := 0;

If check then begin

for b := 1 to 16 do begin

raw_data[b] := 16*b/5;

PROCESS_DATA(raw_data,proc_data,tproc_data);

mm[b] := tproc_data[b];

end;

if (exist('c:\procomm\lock.txt')) then sleep(120000);

SAVE_MON(mm,dmon);

end

Else begin

MONITOR_DATA(raw_data);

PROCESS_DATA(raw_data,proc_data,tproc_data);

for b := 1 to 16 do begin

mm[b] := tproc_data[b];

end;

if (exist('c:\procomm\lock.txt')) then sleep(120000);

SAVE_MON(mm,dmon);

end;

End; {procedure MON_CHECK}

PROCEDURE ANALOG(etyb1:BYTE;zac1:SINGLE);

Begin

If check then Begin

raw_data[etyb1] := 16*EXP(-1/COS(PI*zac1/180));

for b := 2 to 16 do begin

raw_data[b] := 16*b/5;

78

end;

PROCESS_DATA(raw_data,proc_data,tproc_data);

DISPLAY_DATA(proc_data,tproc_data);

End

Else

MONITOR_DATA(raw_data);

PROCESS_DATA(raw_data,proc_data,tproc_data);

DISPLAY_DATA(proc_data,tproc_data);

coldtemp := tproc_data[4] + 273;

ambtemp := tproc_data[6] + 273;

hottemp := tproc_data[5] +273;

gain := (tproc_data[5] - tproc_data[4])/tproc_data[2];

End; {procedure ANALOG}

FUNCTION VOLTAGE(etyb1:BYTE):SINGLE;

Begin

ANALOG(etyb1,zac);

voltage := - proc_data[etyb1]/20;

End; {procedure VOLTAGE}

PROCEDURE AVERAGE(etyb1:BYTE;num_reads:INTEGER; VAR mean,rms:SINGLE);

VAR read:ARRAY[1..100] of SINGLE;

Begin

mean := 0.0; rms := 0.0;

For n := 1 to num_reads Do Begin

read[n] := voltage(etyb1);

mean := mean + read[n]/num_reads;

sleep(100);

End;

For n := 1 to num_reads do rms := rms+(read[n]-mean)*(read[n]-mean);

rms := SQRT(rms/num_reads);

End; {procedure AVERAGE}

PROCEDURE MEASURE(VAR x, y, z : tau_array);

79

{* Reads voltages at various elevations. *}

VAR i : INTEGER;

vsd, rms : SINGLE;

BEGIN

zac := 0.0;

For i := 0 to num_airs - 1 Do

Begin

Case i of

0 : airstep := 4;

1 : airstep := 15;

2 : airstep := 6;

3 : airstep := 4;

4 : airstep := 3;

5 : airstep := 2;

6 : airstep := 1;

7 : airstep := 1;

8 : airstep := 1;

9 : airstep := 1;

10 : airstep := 1;

End; {of case}

Case i of

0 : zac := 7.2;

1 : zac := 34.2;

2 : zac := 45.0;

3 : zac := 52.2;

4 : zac := 57.6;

5 : zac := 61.2;

6 : zac := 63.0;

7 : zac := 64.8;

8 : zac := 66.6;

9 : zac := 68.4;

10 : zac := 70.2;

End; {of case}

80

if posit then begin

zac := -zac;

end

else zac := zac;

gotoxy(20,1); write(zac:4:1);

elevate(airstep);

sleep(10000);

average(1,num_reads,vsd,z[i]);

G[i]:=gain;

(*

* changed by GSH on 4-17-87 to prevent log of negative numbers

*)

IF vsd <= 0.0 Then y[i] := -5.0 ELSE

y[i] := LN(vsd);

x[i] := 1/COS(pi*zac/180.0);

END; {* for i *}

END; {procedure MEASURE}

Procedure ERROR(x3,y3 : tau_array; constant1 : single);

VAR value : single;

Begin

sigmasq := 0;

For j := 0 to 10 Do Begin

w := EXP(y3[j]) - constant1;

if w <= 0 then w := default;

jy := LN(w);

jx := x3[j];

value := int + slope*jx;

sigmasq := sigmasq + (jy - value)*(jy - value);

End; {of j}

End; {of procedure ERROR}

Procedure SUM(x,y : tau_array ; constant : single);

81

VAR

prodxyw,prodxy,prodxsqw,prodxx,prodxsqy,prodxxy,sl,other : DOUBLE;

Begin

sumw := 0; sumxy := 0;

sumx := 0; sumxsq := 0;

sumy := 0;

For i := 0 to 10 Do Begin

w := EXP(y[i]) - constant;

If w <= 0 then w := default;

iy := LN(w);

ix := x[i];

sumw := sumw + w;

sumx := sumx + ix*w;

sumy := sumy + iy*w;

sumxy := sumxy + ix*iy*w;

sumxsq := sumxsq + ix*ix*w;

End; {of i}

prodxyw:=sumxy*sumw; prodxy:=sumx*sumy; prodxsqw:=sumxsq*sumw;

prodxx:=sumx*sumx; prodxsqy:=sumxsq*sumy; prodxxy:=sumx*sumxy;

IF (prodxsqw-prodxx) = 0 THEN PRODXX:=0.9*PRODXSQW;

sl := (prodxyw-prodxy)/(prodxsqw-prodxx);

other := (prodxsqy-prodxxy)/(prodxsqw-prodxx);

slope:=sl;

int:= other;

End; {of procedure SUM}

Procedure REGULAR(x4,y4 : tau_array; manipulate : single);

Begin

SUM(x4,y4,manipulate);

82

ERROR(x4,y4,manipulate);

End; {procedure REGULAR}

Procedure SUBADJUST;

VAR delta1 : SINGLE;

Begin

gain2 := Gfudge*(1/gain);

if gain2 = 0.0 then tau := -99.0

else begin

Tat1 := ambtemp - Tfudge;

{Tat1 := 260;}

adjust1 := gain2*(coldtemp - Tat1) + LOfudge;

SUM(xx,yy,adjust1);

Tat := EXP(int)/gain2;

adjust := gain2*(coldtemp - Tat) + LOfudge;

If adjust < 0 then REGULAR(xx,yy,adjust1)

else REGULAR(xx,yy,adjust);

delta1 := (sumw*sumxsq) - (sumx*sumx);

sigmatau := SQRT((sumw*sigmasq)/((num_airs - 2)*delta1));

tau := -slope;

end;

End; {procedure subadjust}

Procedure SUBADJUST1;

VAR delta1 : SINGLE;

Begin

gain2 := gain;

if gain2 = 0.0 then tau := -99.0

else begin

83

Tat1 := ambtemp - Tfudge;

{Tat1 := 260;}

adjust1 := gain2*(coldtemp - Tat1) + LOfudge;

SUM(xx,yy,adjust1);

Tat := EXP(int)/gain2;

adjust := gain2*(coldtemp - Tat) + LOfudge;

If adjust < 0 then REGULAR(xx,yy,adjust1)

else REGULAR(xx,yy,adjust);

delta1 := (sumw*sumxsq) - (sumx*sumx);

sigmatau := SQRT((sumw*sigmasq)/((num_airs - 2)*delta1));

tau := -slope;

end;

End; {procedure subadjust1}

PROCEDURE SAVE(xx,yy,zz : tau_array; tau,sigmatau,tauz,gain,ambtemp,

coldtemp : SINGLE);

VAR

tau_rec : rec;

BEGIN

with tau_rec DO

BEGIN

time1 := time;

tau1 := tautip;

sigmatau1 := sigmatautip;

tauz1 := tauz;

Vz1 := Vz;

GainZ1:=GainZ;

sigmaVZ1:=sigmaVZ;

gain1 := gaintip;

tauI1:=tau;

sigtauI1:=sigmatau;

gainI1:=gain;

84

Tamb1 := ambtemptip;

Tc := coldtemp;

Th:=hottemp;

x1 := xx;

y1 := yy;

z1 := zz;

G1:=G;

END; {* with *}

RESET(tau_file);

SEEK(tau_file,FILESIZE(tau_file));

WRITE(tau_file,tau_rec);

CLOSE(tau_file);

END; {procedure SAVE}

PROCEDURE MAKE_HEADER;

VAR i:integer;

BEGIN

ASSIGN(header_file,'C:STATUS.TXT');

REWRITE(header_file);

WRITELN(header_file,'Software version: ',softversion);

WRITELN(header_file,'Hardware version: ',hardversion);

WRITELN(header_file,num_reads,' points averaged at each airmass.');

WRITELN(header_file,num_airs,' airmasses measured.');

WRITELN(header_file);

CLOSE(header_file);

END; {procedure MAKE_HEADER}

PROCEDURE MAKE_LINE (title : STRING9 ;xyz : tau_array);

VAR i : INTEGER;

BEGIN

WRITE(title);

FOR i:=0 to num_airs - 1 DO WRITE(xyz[i]:5:2,' ');

WRITELN(' ');

END; {procedure MAKE_LINE}

85

Procedure ZENTAU;

var read:ARRAY[1..100] of SINGLE;

var NL,mean,rms:SINGLE;

Begin

mean:=0.0; rms:=0.0;

for n:=1 to num_reads do begin

read[n]:=voltage(1);

mean:=mean+read[n]/num_reads;

sleep(100);

end;

for n:=1 to num_reads do rms:=rms+(read[n]-mean)*(read[n]-mean);

rms:=SQRT(rms/num_reads);

gainz := Gfudge/gain;

NL := (mean/gainz + LOfudge + (ambtemp - coldtemp))/ambtemp;

If NL <= 0 then tauz := 0

else tauz := -LN(NL);

Vz:=mean;sigmaVz:=rms;

End; {of procedure ZENTAU}

PROCEDURE CHOICE;

BEGIN

{Writeln('Choose one of the following one hour observations.');

Writeln('1) 3.5 second interval, 32 readings');

Writeln('2) 7 second interval, 512 readings');

Writeln('3) 14 second interval, 256 readings');

Readln(run);}

run := 1;

If run = 1 then begin

num_avg := 1024;

interval := 50;

TD1 := 380;

TD2 := 365;

86

end;

If run = 2 then begin

num_avg := 512;

interval := 100;

TD1 := 997;

TD2 := 990;

end;

If run = 3 then begin

num_avg := 256;

interval := 200;

TD1 := 1998;

TD2 := 1990;

end;

END; {of procedure CHOICE}

FUNCTION SECONDS:real;

var

hour,minute,second,sec100 : word;

begin

gettime(hour,minute,second,sec100);

seconds:=hour*3600+minute*60+second+sec100/100;

end; { SECONDS }

FUNCTION HSECONDS : Integer;

Var

t : registers;

secs,hsecs : integer;

Begin

t.ax := 256*$2C;

intr($21,t);

secs := hi(t.dx);

hsecs := lo(t.dx);

87

HSECONDS := 100*secs + hsecs;

End; {of function HSECONDS}

PROCEDURE TIMESLOT;

Begin

time1 := HSECONDS;

time2 := time1 + interval;

End; {of procedure TIMESLOT}

PROCEDURE TIMEOUT;

Begin

If time2 >= 6000 then begin

time3 := time2 - 6000;

Repeat

negtime := HSECONDS - time3;

if negtime <= 0 then checktime := HSECONDS

else checktime := -100;

Until checktime >= time3;

end

else begin

Repeat

checktime := HSECONDS;

Until checktime >= time2;

end;

End; {of procedure TIMEOUT}

PROCEDURE PHI_MONITOR_DATA(var raw_data: araw_data) ;

VAR nc : boolean ;

BEGIN

RECEIVE_DATA($00,raw_data[1],nc) ; {sig-ref}

RESPONDING(nc) ;

88

RECEIVE_DATA($01,raw_data[2],nc) ; {hot-ref}

RECEIVE_DATA($03,raw_data[3],nc) ; {ref}

RECEIVE_DATA($04,raw_data[4],nc) ; {hot}

END ; {of procedure PHI_MONITOR_DATA}

PROCEDURE PHI_PROCESS_DATA(raw_data : araw_data; VAR proc_data : aproc_data;

VAR tproc_data : taproc_data) ;

VAR b : byte ;

BEGIN

For b := 1 to 4 do

proc_data[b] := 5.000*(raw_data[b]/16) ; {converts to mVOLTS}

{note: The subscripts on the following variables do not correspond to the

same subscripts in procedure PROCESS_DATA. See PHI_MONITOR_DATA

for details.}

tproc_data[1] := proc_data[1]/20 ; {sig-ref (switched outputs)}

tproc_data[2] := proc_data[2]/200 ; {hot-ref (gain monitor)}

tproc_data[3] := proc_data[3]/100 ; {ref temp}

tproc_data[4] := proc_data[4]/100 ; {hot temp}

END ; {of procedure PHI_PROCESS_DATA}

PROCEDURE PHISTEPBACK ;

BEGIN

airstep := 10;

ELEVATE(airstep) ;

sleep(1000);

END ; {of procedure PHISTEPBACK}

PROCEDURE PHIMEASURE(VAR w,x,y,t : phi_array);

var

i,j : integer;

t1,t0,t00 : real;

fred : text;

BEGIN

Writeln('Measurement beginning at ',stop_watch,' on ',date2);

For j := 1 to num_avg Do Begin

89

t0:=seconds;

t00:=t0;

w[j]:=0;x[j]:=0;y[j]:=0;t[j]:=0;

For i := 1 to phi_num_reads Do Begin

PHI_MONITOR_DATA(raw_data);

PHI_PROCESS_DATA(raw_data,proc_data,tproc_data);

w[j] := w[j] + tproc_data[1];

x[j] := x[j] + tproc_data[2];

y[j] := y[j] + tproc_data[4] - tproc_data[3];

t[j] := t[j] + tproc_data[3] ;

if i<phi_num_reads then

begin

repeat

t1:=seconds;

if t1-t0<0 then t1:=t1+86400;

until(t1-t0>=0.5);

t0:=t1;

end;

End;

w[j] := w[j]/phi_num_reads;

x[j] := x[j]/phi_num_reads;

y[j] := y[j]/phi_num_reads;

t[j] := t[j]/phi_num_reads;

repeat

t1:=seconds;

if t1-t0<0 then t1:=t1+86400;

until(t1-t00>=3.51);

t00:=t1;

t0:=t1;

End;

Writeln('Measurement complete at ',stop_watch);

END; {of procedure PHIMEASURE}

PROCEDURE PHISAVE(sig1,hot1,ref1,cold1: phi_array);

VAR phase_rec : phirec;

BEGIN

with phase_rec DO BEGIN

90

w2 := sig1; {sigref}

x2 := hot1; {hotref}

y2 := ref1; {hotref-coldref}

t2 := cold1; {cold load}

End;

RESET(phase_file);

SEEK(phase_file,FILESIZE(phase_file));

WRITE(phase_file,phase_rec);

CLOSE(phase_file);

END; {of procedure PHISAVE}

PROCEDURE CONVERT ;

VAR c,sides : Integer ;

phase_rec : phirec ;

dev : text ;

Q : String[4] ;

z : Single ;

gavg,gsum : Single ;

BEGIN {of procedure convert}

fil2 := CONCAT(COPY(phasefile,1,LENGTH(phasefile)-3),'TX',sitenum);

Assign(dev,fil2);

Rewrite(dev);

if calibrate then writeln(dev,'Calibration Run');

Assign(phase_file,phasefile);

Reset(phase_file);

Read(phase_file,phase_rec);

With phase_rec Do Begin

{

w2[1]:=w2[2];

} {This is a temporary fix for a timing problem in the calibration

measurements. It should eventually be replaced by a longer delay

after sending the mirror to 180 degrees to allow transient signals

to die down.}

gsum:=0;

sides:=gfreq div 2;

for c:=1 to gfreq+1 do gsum:=gsum+y2[c]/(x2[c]*GFudge);

91

for c:=1 to 1024 do begin

if (c>1+sides) and (c<1025-sides) then

gsum:=gsum-(y2[c-1-sides]/(x2[c-1-sides]*GFudge))

+(y2[c+sides]/(x2[c+sides]*GFudge));

gavg:=gsum/(gfreq+1);

z := (w2[c]*gavg) + t2[c] + 273.0 ;

Writeln(dev,z:6:2);

end; {for}

End; {of with}

Close(phase_file) ;

erase(phase_file) ;

Close(dev)

END; {of PROCEDURE CONVERT}

PROCEDURE ALLAN_88 ;

VAR

dev : text;

num_avg : Integer;

num,number,space : Integer;

diff,sigma,deviation,avg : Single;

point,temp : phi_array;

sigmaA,time : Single;

Tb : Single;

hour,min,sec,sec100 : word ;

junk : string[40];

Procedure SUMMATION(pp : Integer; w : phi_array; VAR sigma : Single);

VAR count : integer ;

Begin

sigma := 0.0;

FOR count:= 1 to pp-2 Do begin

diff := ((w[count+2] + w[count])/2) - w[count+1];

sigma := sigma + diff*diff;

End; {for}

sigma := 2*sigma/(3*(pp-3));

if sigma>0 then deviation:=sqrt(sigma)

92

else deviation:=0; {note: this number is not passed thru the parm list}

End; {of procedure SUMMATION}

Procedure LONG_TIME(aa,cc,num_points : integer; x : phi_array);

Begin

space := cc;

For n := 1 to num_points Do Begin

avg := 0;

for i := aa to cc do avg := avg + x[i];

point[n] := avg/space;

aa := aa + space;

cc := cc + space;

End; {for}

SUMMATION(num_points,point,sigmaA);

time:=space*3.5;

Writeln(data2file,sigmaA:13:5,' ',deviation:8:3,' ',time:4:0);

End; {of procedure LONG_TIME}

BEGIN {of procedure allan_87}

num_avg := 1024;

fil1 := CONCAT(COPY(fil2,1,length(fil2)-3),'ou',sitenum);

Assign(data2file,fil1) ;

Rewrite(data2file) ;

Assign(data1file,fil2);

Reset(data1file);

i := 1;

if calibrate then begin

writeln(data2file,'Calibration Run');

readln(data1file,junk); {read calibrate label}

end;

Repeat

Readln(data1file,Tb);

temp[i] := Tb;

i := i + 1;

Until EOF(data1file);

num := 1;

number := num_avg;

gettime(hour,min,sec,sec100) ;

93

if (hour < 10) then write(data2file,'0',hour:1,':')

else write(data2file,hour:2,':');

if (min < 10) then writeln(data2file,'0',min:1)

else writeln(data2file,min:2);

LONG_TIME(1,num,number,temp);

Repeat

num_avg := num_avg div 2;

num := num*2;

LONG_TIME(1,num,num_avg,temp);

Until num_avg = 4;

Close(data1file) ;

Close(data2file) ;

END ; {of procedure ALLAN_88}

function cal:boolean;

{checks to see if a calibration phitest should be performed instead of a

sky test.}

var

number :integer;

begin

cal:=false;

if calfreq>0 then begin

assign(phicount_file,phicount);

reset(phicount_file);

read(phicount_file,number);

close(phicount_file);

if number>=calfreq then begin

cal:=true;

number:=0;

end;

number:=number+1;

rewrite(phicount_file);

writeln(phicount_file,number);

close(phicount_file);

end;

end; {function cal}

PROCEDURE PHITEST ;

94

(* This procedure measures fluctuations in the sky temperature and the

rms in sky temperature with the Charlottesville radiometer. The data

will be analyzed to see if phase stability can be related to sky

fluctuations. *)

VAR newbrd : boolean; num : integer; length : single;

go_on : string[2]; m : integer ;

BEGIN

ISPHITEST := TRUE ; {phitest is on}

startdate := date2;

phasefile := whatfile(ISPHITEST);

phasefile := CONCAT(phasefile,'.PHI');

ASSIGN(phase_file, phasefile);

REWRITE(phase_file);

CLOSE(phase_file);

CONNECT_BOARD(newbrd);

GZEN;

{*** Writeln('Install absorber - type go when ready');

Readln(go_on);

If go_on = 'go' then writeln('Here we go!'); ***}

CHOICE;

calibrate:=(calfreq>0) and (cal);

if calibrate then begin

elevate(100);

sleep(20000);

end;

PHIMEASURE(sig1,hot1,ref1,cold1);

for m := 1 to num_avg do begin

writeln(m,' ',sig1[m]:8:3,' ',hot1[m]:8:3,' ',ref1[m]:8:3);

end;

PHISAVE(sig1,hot1,ref1,cold1);

STEPBACK;

CONVERT ;

ALLAN_88 ;

END; {of procedure PHITEST}

FUNCTION PHIDEFAULT: BOOLEAN ;

{ This function is the default action which is implemented if decision in

95

the file ``phitest.txt'' is equal to 0. This function will be true if

the number of Julian hours is a multiple of phifreq read from fudge.pas.

In addition, calibrate will be set to true one out of every calfreq

phitests}

VAR

year,month,day,day_of_week : word ;

hour,minute,second,sec100 : word ;

Julianday,Julianhour : REAL;

remainder : REAL ;

prejunk : longint ;

BEGIN

phidefault := FALSE;

if phifreq>0 then begin

GETDATE(year,month,day,day_of_week) ;

GETTIME(hour,minute,second,sec100) ;

(* Julian day 2440000 began at noon of May 23, 1968. *)

Julianday := 365.25*(year-1968) + 30.6001*(month - 5) + 1.0*(day - 23) ;

Julianday := Julianday + 2440000.0 ;

Julianhour := Julianday*24.0 + hour*1.0 + minute/60.0 + second/3600.0 ;

Julianhour := Julianhour + 12.0 ;

{ this accounts for the fact that the Julian day begins at noon }

prejunk := TRUNC(Julianhour/phifreq) ;

(* intermediate step in determining remainder *)

remainder := Julianhour - phifreq*prejunk ;

IF ((remainder >= 0.0) and (remainder <= 0.5)) then phidefault := TRUE ;

end;

END ; {of function PHIDEFAULT}

FUNCTION PHICHECK : BOOLEAN;

{ This function will check the file ``a:phitime.txt'' for phitest times. If the

actual time is equal to or greater than the file time by 30 minutes, the

procedure PHITEST will be implemented. JJH, 11 July 1988 }

VAR

testday : string[6] ;

timenow,testtime : string[4] ;

blank : string[1] ;

96

realday,realtime,today,nowtime : SINGLE ;

m,n,p,q : integer ;

hour,minute,second,sec100 : word ;

BEGIN

phicheck := FALSE ;

while not EOF(phitest_file) do begin

readln(phitest_file,testday,blank,testtime) ;

VAL(testday,realday,m) ;

VAL(testtime,realtime,n) ;

VAL(DATE2,today,p) ;

IF today = realday then BEGIN

GETTIME(hour,minute,second,sec100) ;

nowtime := hour*100.0 + minute*1.0 ;

IF (nowtime >= realtime) and (nowtime <= (realtime + 30.0)) then

phicheck := TRUE

END ; {if}

END ; {while}

Close(phitest_file) ;

END ; {of function PHICHECK}

{********************* MAIN PROGRAM ***************************}

VAR

newbrd : boolean;

Q : STRING[5];

filesave : integer ;

BEGIN

caldelay;

ASSIGN(AUX,'AUX') ;

Assign(fudge_file,fil);

Reset(fudge_file);

Readln(fudge_file,Gfudge);

readln(fudge_file,Tfudge);

readln(fudge_file,LOfudge);

readln(fudge_file,phifreq);

readln(fudge_file,calfreq);

97

readln(fudge_file,gfreq);

read(fudge_file,sitenum);

close(fudge_file);

if 1024 mod gfreq <>0 then gfreq:=256;

Writeln('Gfudge = ',Gfudge:4:2,' Tfudge = ',Tfudge:4:0);

Writeln('LOfudge =',LOfudge:4:0,' PhiFreq =',phifreq:5:2);

Writeln('calfreq =',calfreq,' GFreq =',gfreq);

writeln('sitenum =',sitenum);

sleep(1000);

Assign(phitest_file,phitime) ;

Reset(phitest_file) ;

readln(phitest_file,decision) ;

readln(phitest_file,filesave); {if filesave=0 the converted data is erased

and only the allan variance file remains}

{This part of the program decides how to check if it is time for a phitest

and then calls the procedure to do the checks.}

if decision=0 then begin

Close(phitest_file) ;

IF PHIDEFAULT then PHITEST;

end

else if decision=1 then begin

IF PHICHECK then PHITEST ;

end

else if decision=2 then begin

if phicheck or phidefault then phitest;

end

else writeln('Illegal value for phitype. Phitest deactivated.');

{ decision can be set to different integers for different options }

IF (filesave=0) then erase(data1file) ;

ASSIGN(GLOB1,'C:\DATA\GLOB1.INT');

ASSIGN(GLOB2,'C:\DATA\GLOB2.REA');

ASSIGN(GLOB3,'C:\DATA\GLOB3.BOO');

ASSIGN(GLOB4,'C:\DATA\GLOB4.BYT');

ASSIGN(GLOB5,'C:\DATA\GLOB5.STR');

ASSIGN(STORBOOL,'C:STORBOOL.DAT');

98

RESET(STORBOOL);

READ(STORBOOL,WHATISIT);

CLOSE(STORBOOL);

IF NOT WHATISIT THEN

begin

WRITELN('THE SYSTEM WAS JUST BOOTED.');

rewrite(storbool);

WHATISIT:=TRUE;

write(storbool,WHATISIT);

close(storbool);

end

ELSE BEGIN

WRITELN;

RESET(GLOB1);

READ(GLOB1,i,n,p,j,thismin,dmon,adr,tautime);

READ(GLOB1,montime,airstep,ioctl_value,mon_flag);

CLOSE(GLOB1);

RESET(GLOB2);

READ(GLOB2,air,gain,zac,coldtemp,tau,slope,int);

READ(GLOB2,ambtemp,ix,iy,Tamb,sumx,sumy,sumw,w,sumxy,sumxsq);

READ(GLOB2,Tat,Tat1,gain2,adjust,adjust1,sigmatau,tauz,jy,jx,sigmasq);

FOR NEWI:= 1 TO 10 DO

READ(GLOB2,xx[NEWI],yy[NEWI],zz[NEWI]);

FOR NEWI:= 1 TO 16 DO

READ(GLOB2,mm[NEWI],raw_data[NEWI],proc_data[NEWI],tproc_data[NEWI]);

CLOSE(GLOB2);

RESET(GLOB3);

READ(GLOB3,flag,achec,posit,stop);

CLOSE(GLOB3);

RESET(GLOB4);

READ(GLOB4,b,address_hi,nadr,comvar,com_base);

CLOSE(GLOB4);

99

RESET(GLOB5);

READ(GLOB5,taufile,monitorfile,startdate);

CLOSE(GLOB5);

TIPPING:= FALSE;

ASSIGN(TAU_FILE,TAUFILE);

ASSIGN(MON_FILE,MONITORFILE);

GOTO beta;

END; { ELSE }

WRITELN(prog,' Version : ',version,' ',revdate);

alpha: WRITELN('Automatic tipping scans beginning ',time,' UT ',date2);

startdate:=date2;

IF NOT exist('C:STATUS.TXT') THEN make_header;

ISPHITEST := TRUE ; {phitest is activated}

taufile:=whatfile2;

monitorfile:=CONCAT(taufile,'.MO',sitenum);

taufile:=CONCAT(taufile,'.DA',sitenum);

ASSIGN(TAU_FILE,TAUFILE);

REWRITE(TAU_FILE);

CLOSE(TAU_FILE);

WRITELN('Opacity data to disk file ', taufile);

ASSIGN(MON_FILE,MONITORFILE);

REWRITE(MON_FILE);

CLOSE(MON_FILE);

montime:= minutes;

WRITELN('Monitor data to disk file ', monitorfile);

sleep(1000);

gamma: CONNECT_BOARD(newbrd);

CLRSCR;

{ START;} SCREEN;

{ STEPBACK;}

posit := true;

DIRECT;

GZEN;

100

ZENTAU;

If minutes >= montime + monint then begin

montime := minutes;

mon_check(mm,dmon);

end;

tautime := minutes;

TIPPING:= TRUE;

MEASURE(xx, yy, zz);

SUBADJUST;

gaintip:=Gfudge/gain;

tautip:=tau;

sigmatautip:=sigmatau;

tauz2:=tauz;

ambtemptip:=ambtemp;

gain:=Gfudge/gain;

FOR COUNT:=1 to 20 do

begin

Gcorr:=((coldtemp-ambtemp+Tfudge)+(ambtemp-Tfudge)*exp(-tauz2));

Gcorr:=Gcorr/((coldtemp-ambtemp+Tfudge)+(ambtemp-TFudge)*exp(-tau));

gain:=gain*Gcorr;

tauz2:=tau;

subadjust1;

end;

CLRSCR;

WRITELN(date2,' ',time,'UT TAU = ',tautip:6:3,' +/- ',sigmatau:6:4);

WRITELN(' tauz = ',tauz:6:3,' tau cali = ',tau:6:3);

make_line('Airmass: ',xx);

make_line('ln(vsd): ',yy);

make_line('rms(vsd):',zz);

sleep(15000);

if (exist('c:\procomm\lock.txt')) then sleep(120000);

save(xx,yy,zz,tau,sigmatau,tauz,gain,ambtemp,coldtemp);

writeln;

{ Writeln('Another tau scan? (y/n)');

101

Readln(Q); Q := copy(Q,1,1);

If (Q = 'Y') or (Q = 'y') then goto beta;

goto psi; }

beta: IF date2 <> startdate THEN GOTO alpha;

IF minutes >= montime + monint THEN BEGIN

montime:= minutes;

mon_check(mm,dmon);

END;

IF minutes >= tautime + tauint THEN GOTO gamma;

WINDOW(1,1,80,25) ;

thismin:=minutes;

GOTOXY(1,20);

write(' ');

GOTOXY(1,21);

write(' ');

gotoxy(1,20);

WRITELN('Minutes = ',thismin,' Next Tau scan at ',tautime + tauint);

IF NOT TIPPING THEN BEGIN

delta: IF minutes < ((thismin+1) MOD 1440) THEN GOTO delta;

GOTO beta;

END; {IF NOT TIPPING}

psi:

REWRITE(GLOB1);

WRITE(GLOB1,i,n,p,j,thismin,dmon,adr,tautime);

WRITE(GLOB1,montime,airstep,ioctl_value,mon_flag);

CLOSE(GLOB1);

REWRITE(GLOB2);

WRITE(GLOB2,air,gain,zac,coldtemp,tau,slope,int);

WRITE(GLOB2,ambtemp,ix,iy,Tamb,sumx,sumy,sumw,w,sumxy,sumxsq);

WRITE(GLOB2,Tat,Tat1,gain2,adjust,adjust1,sigmatau,tauz,jy,jx,sigmasq);

FOR NEWI:= 1 TO 10 DO

WRITE(GLOB2,xx[NEWI],yy[NEWI],zz[NEWI]);

FOR NEWI:= 1 TO 16 DO

102

WRITE(GLOB2,mm[NEWI],raw_data[NEWI],proc_data[NEWI],tproc_data[NEWI]);

CLOSE(GLOB2);

REWRITE(GLOB3);

WRITE(GLOB3,flag,achec,posit,stop);

CLOSE(GLOB3);

REWRITE(GLOB4);

WRITE(GLOB4,b,address_hi,nadr,comvar,com_base);

CLOSE(GLOB4);

REWRITE(GLOB5);

WRITE(GLOB5,taufile,monitorfile,startdate);

CLOSE(GLOB5);

END.

D WHRSTRT.PAS

PROGRAM WHRSTRT;

{THIS PROGRAM IS RUN BY THE COMPUTER CONTROLLING THE RADIOMETER ONLY}

{WHEN THAT COMPUTER IS FIRST BOOTED UP. IT STORES A VALUE OF FALSE}

{INTO A FILE OF BOOLEAN CALLED 'STORBOOL.DAT.' THIS DATA FILE IS}

{READ BY CVTIPPER TO DETERMINE WHICH COMMANDS NEED TO BE EXECUTED TO}

{INSURE PROPER RADIOMETER OPERATION. WHEN THE COMPUTER IS FIRST

BOOTED,}

{FOR INSTANCE, A 'STORBOOL.DAT' VALUE OF 'FALSE' INDICATES THAT}

{CVTIPPER .DAT AND .MON FILES MUST BE INITIALIZED. WHILE BEING RUN}

{THE FIRST TIME, CVTIPPER CHANGES THE 'STORBOOL.DAT' VALUE TO 'TRUE.'}

{THE NEXT TIME CVTIPPER IS EXECUTED, IT KNOWS TO READ IN VALUES OF}

{VARIABLES THAT WERE SAVED TO DISK UPON EXIT OF THE PREVIOUS RUN.}

VAR

DATAFILE: FILE OF BOOLEAN;

NOTBOOTED:BOOLEAN;

BEGIN

103

NOTBOOTED:=FALSE;

ASSIGN(DATAFILE,'STORBOOL.DAT');

REWRITE(DATAFILE);

WRITE(DATAFILE,NOTBOOTED);

CLOSE(DATAFILE);

END.

E Watchdog Documentation

WATCHDOG.COM and WATCHDG1.COM

Written by James R. Reinders, minor modifications by Jim Kovalsky. Contact

either through The Sailboard, Highland, MI (313) 887-7429. PC-Slave mods

by Doug Azzarito, TECHNOLOGY CONSULTANTS RBBS, 407-627-6969.

Purpose:

To monitor the carrier status on the desginated serial port, and re-boot the

machine if carrier is dropped. This reset WILL include the power-on

self-test.

Designed specifically for use with Bulletin Board systems allowing remote

users to exit to DOS, but not capable of monitoring the carrier.

Prevents the unwanted situation of a caller dropping to DOS and accidentally

(or not!) disconnecting, leaving the system 'hung' until a manual re-boot can

be executed.

Implementation:

Use WATCHDOG.COM to protect COM2: and WATCHDG1.COM to protect COM1: (The

original version was for COM2!)

For correct usage, the following must be true:

1) Your AUTOEXEC.BAT file must be set to start your Bulletin Board

104

2) WATCHDOG MUST be activated and deactivated as instructed below

Installation:

If your batch file to change the serial port into the console is RCTTY.BAT,

and it returns control to RBBS.BAT when it has finished, it MUST be set as

follows:

WATCHDOG ON

.

.

. Whatever commands you have

.

.

WATCHDOG OFF

RBBS

The first line installs and activates watchdog, and the second-from-bottom

line deactivates watchdog. WATCHDOG MUST BE TURNED OFF OR IT WILL RESET THE

SYSTEM WHEN THE CALLER HANGS UP, EVEN IF HE HAS RETURNED TO THE BULLETIN

BOARD!

Command Line Options:

WATCHDOG ON

... Activates, will also install if not already resident

WATCHDOG OFF

... Deactivates and remains resident if previously installed,

installs and leaves inactive if not already loaded.

Notes:

Any utility that uses the clock interrupt will cause Watchdog to malfunction.

105

Watchdog checks the carrier status with each cycle of the clock, (18.2 times

per second) and if any other clock interrupts are executed AFTER installing

Watchdog, it can no longer make its interrupt!

Distribution:

This program is in the Public Domain, feel free to copy and distribute it.

Please DO NOT distribute any modified versions or alter any credits. Any

suggestions or improvements should be addressed/uploaded to James Reinders on

The Sailboard, Highland, Mi - 313-887-7429 [300/1200, 24 hours]

PC-Slave version:

A special version of WATCHDOG (WATCHDGS.COM) is provided for use by

PC-Slave card users. Because the PC-Slave does not use standard BIOS

locations, the method used by WATCHDOG will not work. WATCHDGS will monitor

COM2: as WATCHDOG does, but it uses INT 19H (BOOT-STRAP) to reboot the

PC-Slave if carrier is lost. Use WATCHDGS on PC-Slaves and other non

standard MS-DOS systems, and WATCHDOG on standard PC's and compatibles.

F Zip Documentation

NAME

zip, zipcloak, zipnote, zipsplit - package and compress

(archive) files

SYNOPSIS

zip [-cdDeEfFghjklLmoqrSTuvVwyz@$] [-b path] [-n suffixes]

[-t mmddyy] [zipfile [file1 file2 ...]] [-xi list]

zipcloak [-dhL] [-b path] zipfile

zipnote [-hwL] [-b path] zipfile

zipsplit [-hiLpst] [-n size] [-b path] zipfile

106

DESCRIPTION

zip is a compression and file packaging utility for Unix,

VMS, MSDOS, OS/2, Windows NT, Minix, Atari and Macintosh.

It is analogous to a combination of the UNIX commands tar(1)

and compress(1) and is compatible with PKZIP (Phil Katz's

ZIP for MSDOS systems).

A companion program (unzip(1L)), unpacks zip archives. The

zip and unzip(1L) programs can work with archives produced

by PKZIP, and PKZIP and PKUNZIP can work with archives pro-

duced by zip. zip version 2.0.1 is compatible with PKZIP

2.04 Note that PKUNZIP 1.10 cannot extract files produced by

PKZIP 2.04 or zip 2.0.1. You must use PKUNZIP 2.04g or unzip

5.0p1 (or later versions) to extract them.

For a brief help on zip and unzip, run each without specify-

ing any parameters on the command line.

The program is useful for packaging a set of files for dis-

tribution; for archiving files; and for saving disk space by

temporarily compressing unused files or directories.

The zip program puts one or more compressed files into a

single zip archive, along with information about the files

(name, path, date, time of last modification, protection,

and check information to verify file integrity). An entire

directory structure can be packed into a zip archive with a

single command. Compression ratios of 2:1 to 3:1 are common

for text files. zip has one compression method (deflation)

and can also store files without compression. zip automati-

cally chooses the better of the two for each file to be

compressed.

When given the name of an existing zip archive, zip will

replace identically named entries in the zip archive or add

entries for new names. For example, if foo.zip exists and

contains foo/file1 and foo/file2, and the directory foo con-

tains the files foo/file1 and foo/file3, then:

107

zip -r foo foo

will replace foo/file1 in foo.zip and add foo/file3 to

foo.zip. After this, foo.zip contains foo/file1, foo/file2,

and foo/file3, with foo/file2 unchanged from before.

If the file list is specified as -@, zip takes the list of

input files from standard input. Under UNIX, this option

can be used to powerful effect in conjunction with the

find(1) command. For example, to archive all the C source

files in the current directory and its subdirectories:

find . -name ``*.[ch]'' -print | zip source -@

(note that the pattern must be quoted to keep the shell from

expanding it). zip will also accept a single dash (``-'') as

the zip file name, in which case it will write the zip file

to standard output, allowing the output to be piped to

another program. For example:

zip -r - . | dd of=/dev/nrst0 obs=16k

would write the zip output directly to a tape with the

specified block size for the purpose of backing up the

current directory.

zip also accepts a single dash (``-'') as the name of a file

to be compressed, in which case it will read the file from

standard input, allowing zip to take input from another pro-

gram. For example:

tar cf - . | zip backup -

would compress the output of the tar command for the purpose

of backing up the current directory. This generally produces

better compression than the previous example using the -r

option, because zip can take advantage of redundancy between

files. The backup can be restored using the command

108

unzip -p backup | tar xf -

When no zip file name is given and stdout is not a terminal,

zip acts as a filter, compressing standard input to standard

output. For example,

tar cf - . | zip | dd of=/dev/nrst0 obs=16k

is equivalent to

tar cf - . | zip - - | dd of=/dev/nrst0 obs=16k

zip archives created in this manner can be extracted with

the program funzip which is provided in the unzip package,

or by gunzip which is provided in the gzip package. For

example:

dd if=/dev/nrst0 ibs=16k | funzip | tar xvf -

When changing an existing zip archive, zip will write a tem-

porary file with the new contents, and only replace the old

one when the process of creating the new version has been

completed without error.

If the name of the zip archive does not contain an exten-

sion, the extension .zip is added. If the name already con-

tains an extension other than .zip the existing extension is

kept unchanged.

OPTIONS

-b path

Use the specified path for the temporary zip archive.

For example:

zip -b /tmp stuff *

will put the temporary zip archive in the directory

/tmp, copying over stuff.zip to the current directory

109

when done. This option is only useful when updating an

existing archive, and the file system containing this

old archive does not have enough space to hold both old

and new archive at the same time.

-c Add one-line comments for each file. File operations

(adding, updating) are done first, and the user is then

prompted for a one-line comment for each file. Enter

the comment followed by return, or just return for no

comment.

-d Remove (delete) entries from a zip archive. For exam-

ple:

zip -d foo foo/tom/junk foo/harry/* *.o

will remove the entry foo/tom/junk, all of the files

that start with foo/harry/, and all of the files that

end with .o (in any path). Note that shell pathname

expansion has been inhibited with backslashes, so that

zip can see the asterisks, enabling zip to match on the

contents of the zip archive instead of the contents of

the current directory.

Under MSDOS, -d is case sensitive when it matches names

in the zip archive. This requires that file names be

entered in upper case if they were zipped by PKZIP on

an MSDOS system.

-D Do not create entries in the zip archive for direc-

tories. Directory entries are created by default so

that their attributes can be saved in the zip archive.

The environment variable ZIPOPT can be used to change

the default options. For example under Unix with sh:

ZIPOPT=''-D''; export ZIPOPT

(The variable ZIPOPT can be used for any option except

-i and -x and can include several options.) The option

110

-D is a shorthand for -x ``*/'' but the latter cannot be

set as default in the ZIPOPT environment variable.

-e Encrypt the contents of the zip archive using a pass-

word which is entered on the terminal in response to a

prompt (this will not be echoed; if standard error is

not a tty, zip will exit with an error).

-ee Encrypt contents, prompting for the password twice,

checking that the two entries are identical before

using the password.

-f Replace (freshen) an existing entry in the zip archive

only if it has been modified more recently than the

version already in the zip archive; unlike the update

option (-u) this will not add files that are not

already in the zip archive. For example:

zip -f foo

This command should be run from the same directory from

which the original zip command was run, since paths

stored in zip archives are always relative.

-F Fix the zip archive. This option can be used if some

portions of the archive are missing. It is not

guaranteed to work, so you MUST make a backup of the

original archive first.

When doubled as in -FF the compressed sizes given

inside the damaged archive are not trusted and zip

scans for special signatures to identify the limits

between the archive members. The single -F is more

reliable if the archive is not too much damaged, for

example if it has only been truncated, so try this

option first.

Neither option will recover archives that have been

incorrectly transferred in ascii mode instead of

111

binary. After the repair, the -t option of unzip may

show that some files have a bad CRC. Such files cannot

be recovered; you can remove them from the archive

using the -d option of zip.

-g Grow (append to) the specified zip archive, instead of

creating a new one. If this operation fails, zip

attempts to restore the archive to its original state.

If the restoration fails, the archive might become cor-

rupted.

-h Display the zip help information (this also appears if

zip is run with no arguments).

-i files

Include only the specified files, as in:

zip -r foo . -i *.c

which will include only the files that end in .c in the

current directory and its subdirectories. (Note for

PKZIP users: the equivalent command is

pkzip -r foo *.c

PKZIP does not allow recursion in directories other

than the current one.) The backslash avoids the shell

filename substitution, so that the name matching is

performed by zip at all directory levels.

-j Store just the name of a saved file (junk the path),

and do not store directory names. By default, zip will

store the full path (relative to the current path).

-k Attempt to convert the names and paths to conform to

MSDOS, store only the MSDOS attribute (just the user

write attribute from UNIX), and mark the entry as made

under MSDOS (even though it was not); for compatibility

with PKUNZIP under MSDOS which cannot handle certain

112

names such as those with two dots.

-l Translate the Unix end-of-line character LF into the

MSDOS convention CR LF. This option should not be used

on binary files. This option can be used on Unix if

the zip file is intended for PKUNZIP under MSDOS. If

the input files already contain CR LF, this option adds

an extra CR. This ensure that unzip -a on Unix will get

back an exact copy of the original file, to undo the

effect of zip -l.

-ll Translate the MSDOS end-of-line CR LF into Unix LF.

This option should not be used on binary files. This

option can be used on MSDOS if the zip file is intended

for unzip under Unix.

-L Display the zip license.

-m Move the specified files into the zip archive; actu-

ally, this deletes the target directories/files after

making the specified zip archive. If a directory

becomes empty after removal of the files, the directory

is also removed. No deletions are done until zip has

created the archive without error. This is useful for

conserving disk space, but is potentially dangerous so

it is recommended to use it in combination with -T to

test the archive before removing all input files.

-n suffixes

Do not attempt to compress files named with the given

suffixes. Such files are simply stored (0% compression)

in the output zip file, so that zip doesn't waste its

time trying to compress them. The suffixes are

separated by either colons or semicolons. For example:

zip -rn .Z:.zip:.tiff:.gif:.snd foo foo

will copy everything from foo into foo.zip, but will

store any files that end in .Z, .zip, .tiff, .gif, or

113

.snd without trying to compress them (image and sound

files often have their own specialized compression

methods). By default, zip does not compress files with

extensions in the list .Z:.zip:.zoo:.arc:.lzh:.arj.

Such files are stored directly in the output archive.

The environment variable ZIPOPT can be used to change

the default options. For example under Unix with csh:

setenv ZIPOPT ``-n .gif:.zip''

To attempt compression on all files, use:

zip -n : foo

The maximum compression option -9 also attempts

compression on all files regardless of extension.

-o Set the ``last modified'' time of the zip archive to the

latest (oldest) ``last modified'' time found among the

entries in the zip archive. This can be used without

any other operations, if desired. For example:

zip -o foo

will change the last modified time of foo.zip to the

latest time of the entries in foo.zip.

-q Quiet mode; eliminate informational messages and com-

ment prompts. (Useful, for example, in shell scripts

and background tasks).

-r Travel the directory structure recursively; for exam-

ple:

zip -r foo foo

In this case, all the files and directories in foo are

saved in a zip archive named foo.zip, including files

with names starting with ``.'', since the recursion does

114

not use the shell's file-name substitution mechanism.

If you wish to include only a specific subset of the

files in directory foo and its subdirectories, use the

-i option to the specify the pattern of files to be

included. You should not use -r with the name ``.*'',

since that matches ``..'' which will attempt to zip up

the parent directory (probably not what was intended).

-S Include system and hidden files. This option is effec-

tive on some systems only; it is ignored on Unix.

-t mmddyy

Do not operate on files modified prior to the specified

date, where mm is the month (0-12), dd is the day of

the month (1-31), and yy are the last two digits of the

year. For example:

zip -rt 120791 infamy foo

will add all the files in foo and its subdirectories

that were last modified on or after 7 December 1991, to

the zip archive infamy.zip.

-T Test the integrity of the new zip file. If the check

fails, the old zip file is unchanged and (with the -m

option) not input files are removed.

-u Replace (update) an existing entry in the zip archive

only if it has been modified more recently than the

version already in the zip archive. For example:

zip -u stuff *

will add any new files in the current directory, and

update any files which have been modified since the zip

archive stuff.zip was last created/modified (note that

zip will not try to pack stuff.zip into itself when you

do this).

115

Note that the -u option with no arguments acts like the

-f (freshen) option.

-v Verbose mode. Display a progress indicator during

compression.

-V Save VMS file attributes. This option is available on

VMS only; zip archives created with this option will

generally not be usable on other systems.

-w Append the version number of the files to the name,

including multiple versions of files. (VMS only;

default: use only the most recent version of a speci-

fied file).

-x files

Explicitly exclude the specified files, as in:

zip -r foo foo -x *.o

which will include the contents of foo in foo.zip while

excluding all the files that end in .o. The backslash

avoids the shell filename substitution, so that the

name matching is performed by zip at all directory lev-

els.

-y Store symbolic links as such in the zip archive,

instead of compressing and storing the file referred to

by the link (UNIX only).

-z Prompt for a multi-line comment for the entire zip

archive. The comment is ended by a line containing

just a period, or an end of file condition (^D on UNIX,

^Z on MSDOS, OS/2, and VAX/VMS). The comment can be

taken from a file:

zip -z foo < foowhat

-# Regulate the speed of compression using the specified

116

digit #, where -0 indicates no compression (store all

files), -1 indicates the fastest compression method

(less compression) and -9 indicates the slowest

compression method (optimal compression, ignores the

suffix list). The default compression level is -6.

-@ Take the list of input files from standard input.

-$ Include the volume label for the the drive holding the

first file to be compressed. If you want to include

only the volume label or to force a specific drive, use

the drive name as first file name, as in:

zip -$ foo a: c:bar

This option is effective on some systems only (MSDOS

and OS/2); it is ignored on Unix.

EXAMPLES

The simplest example:

zip stuff *

creates the archive stuff.zip (assuming it does not exist)

and puts all the files in the current directory in it, in

compressed form (the .zip suffix is added automatically,

unless that archive name given contains a dot already; this

allows the explicit specification of other suffixes).

Because of the way the shell does filename substitution,

files starting with ``.'' are not included; to include these

as well:

zip stuff .* *

Even this will not include any subdirectories from the

current directory.

To zip up an entire directory, the command:

117

zip -r foo foo

creates the archive foo.zip, containing all the files and

directories in the directory foo that is contained within

the current directory.

You may want to make a zip archive that contains the files

in foo, without recording the directory name, foo. You can

use the -j option to leave off the paths, as in:

zip -j foo foo/*

If you are short on disk space, you might not have enough

room to hold both the original directory and the correspond-

ing compressed zip archive. In this case, you can create

the archive in steps using the -m option. If foo contains

the subdirectories tom, dick, and harry, you can:

zip -rm foo foo/tom

zip -rm foo foo/dick

zip -rm foo foo/harry

where the first command creates foo.zip, and the next two

add to it. At the completion of each zip command, the last

created archive is deleted, making room for the next zip

command to function.

PATTERN MATCHING

This section applies only to UNIX. Watch this space for

details on MSDOS and VMS operation.

The UNIX shells (sh(1) and csh(1)) do filename substitution

on command arguments. The special characters are:

? match any single character

* match any number of characters (including none)

118

[] match any character in the range indicated within the

brackets (example: [a-f], [0-9]).

When these characters are encountered (without being escaped

with a backslash or quotes), the shell will look for files

relative to the current path that match the pattern, and

replace the argument with a list of the names that matched.

The zip program can do the same matching on names that are

in the zip archive being modified or, in the case of the -x

(exclude) or -i (include) options, on the list of files to

be operated on, by using backslashes or quotes to tell the

shell not to do the name expansion. In general, when zip

encounters a name in the list of files to do, it first looks

for the name in the file system. If it finds it, it then

adds it to the list of files to do. If it does not find it,

it looks for the name in the zip archive being modified (if

it exists), using the pattern matching characters described

above, if present. For each match, it will add that name to

the list of files to be processed, unless this name matches

one given with the -x option, or does not match any name

given with the -i option.

The pattern matching includes the path, and so patterns like

*.o match names that end in ``.o'', no matter what the path

prefix is. Note that the backslash must precede every spe-

cial character (i.e. ?*[]), or the entire argument must be

enclosed in double quotes (``'').

In general, use backslash to make zip do the pattern match-

ing with the -f (freshen) and -d (delete) options, and some-

times after the -x (exclude) option when used with an

appropriate operation (add, -u, -f, or -d).

SEE ALSO

compress(1), shar(1L), tar(1), unzip(1L), gzip(1L)

BUGS

zip 2.0.1 is not compatible with PKUNZIP 1.10. Use zip 1.1

119

to produce zip files which can be extracted by PKUNZIP 1.10.

zip files produced by zip 2.0.1 must not be updated by zip

1.1 or PKZIP 1.10, if they contain encrypted members or if

they have been produced in a pipe or on a non-seekable dev-

ice. The old versions of zip or PKZIP would create an

archive with an incorrect format. The old versions can list

the contents of the zip file but cannot extract it anyway

(because of the new compression algorithm). If you do not

use encryption and use regular disk files, you do not have

to care about this problem.

Under VMS, not all of the odd file formats are treated prop-

erly. Only stream-LF format zip files are expected to work

with zip. Others can be converted using Rahul Dhesi's BILF

program. This version of zip handles some of the conversion

internally. When using Kermit to transfer zip files from

Vax to MSDOS, type ``set file type block'' on the Vax. When

transfering from MSDOS to Vax, type ``set file type fixed'' on

the Vax. In both cases, type ``set file type binary'' on

MSDOS.

Under VMS, zip hangs for file specification that uses DECnet

syntax foo::*.*.

On OS/2, zip cannot match some names, such as those includ-

ing an exclamation mark or a hash sign. This is a bug in

OS/2 itself: the 32-bit DosFindFirst/Next don't find such

names. Other programs such as GNU tar are also affected by

this bug.

Under OS/2, the amount of External Attributes displayed by

DIR is (for compatibility) the amount returned by the 16-bit

version of DosQueryPathInfo(). Otherwise OS/2 1.3 and 2.0

would report different EA sizes when DIRing a file. How-

ever, the structure layout returned by the 32-bit

DosQueryPathInfo() is a bit different, it uses extra padding

bytes and link pointers (it's a linked list) to have all

fields on 4-byte boundaries for portability to future RISC

120

OS/2 versions. Therefore the value reported by zip (which

uses this 32-bit-mode size) differs from that reported by

DIR. zip stores the 32-bit format for portability, even the

16-bit MS-C-compiled version running on OS/2 1.3, so even

this one shows the 32-bit-mode size.

AUTHORS

Copyright (C) 1990-1993 Mark Adler, Richard B. Wales, Jean-

loup Gailly, Kai Uwe Rommel, Igor Mandrichenko and John

Bush. Permission is granted to any individual or institu-

tion to use, copy, or redistribute this software so long as

all of the original files are included, that it is not sold

for profit, and that this copyright notice is retained.

LIKE ANYTHING ELSE THAT'S FREE, ZIP AND ITS ASSOCIATED UTIL-

ITIES ARE PROVIDED AS IS AND COME WITH NO WARRANTY OF ANY

KIND, EITHER EXPRESSED OR IMPLIED. IN NO EVENT WILL THE

COPYRIGHT HOLDERS BE LIABLE FOR ANY DAMAGES RESULTING FROM

THE USE OF THIS SOFTWARE.

Please send bug reports and comments by email to:

zip-bugs@wkuvx1.bitnet. For bug reports, please include the

version of zip, the make options used to compile it, the

machine and operating system in use, and as much additional

information as possible.

ACKNOWLEDGEMENTS

Thanks to R. P. Byrne for his Shrink.Pas program, which

inspired this project, and from which the shrink algorithm

was stolen; to Phil Katz for placing in the public domain

the zip file format, compression format, and .ZIP filename

extension, and for accepting minor changes to the file for-

mat; to Steve Burg for clarifications on the deflate format;

to Haruhiko Okumura and Leonid Broukhis for providing some

useful ideas for the compression algorithm; to Keith Peter-

sen, Rich Wales, Hunter Goatley and Mark Adler for providing

a mailing list and ftp site for the INFO-ZIP group to use;

and most importantly, to the INFO-ZIP group itself (listed

in the file infozip.who) without whose tireless testing and

121

bug-fixing efforts a portable zip would not have been possi-

ble. Finally we should thank (blame) the first INFO-ZIP

moderator, David Kirschbaum, for getting us into this mess

in the first place. The manual page was rewritten for UNIX

by R. P. C. Rodgers.

G Unzip Documentation

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

NAME

unzip - list, test and extract compressed files in a ZIP

archive

SYNOPSIS

unzip [-Z] [-cflptuvz[abjnoqsCLV$]] file[.zip] [file(s) ...]

[-x xfile(s) ...] [-d exdir]

DESCRIPTION

unzip will list, test, or extract files from a ZIP archive,

commonly found on MS-DOS systems. The default behavior

(with no options) is to extract into the current directory

(and subdirectories below it) all files from the specified

ZIP archive. A companion program, zip(1L), creates ZIP

archives; both programs are compatible with archives created

by PKWARE's PKZIP and PKUNZIP for MS-DOS, but in many cases

the program options or default behaviors differ.

ARGUMENTS

file[.zip]

Path of the ZIP archive(s). If the file specification

is a wildcard, each matching file is processed in an

order determined by the operating system (or file sys-

tem). Only the filename can be a wildcard; the path

itself cannot. Wildcard expressions are similar to

Unix egrep(1) (regular) expressions and may contain:

122

* matches a sequence of 0 or more characters

? matches exactly 1 character

[...]

matches any single character found inside the

brackets; ranges are specified by a beginning

character, a hyphen, and an ending character. If

an exclamation point or a caret (`!' or `^') fol-

lows the left bracket, then the range of charac-

ters within the brackets is complemented (that is,

anything except the characters inside the brackets

is considered a match).

(Be sure to quote any character which might otherwise

be interpreted or modified by the operating system,

particularly under Unix and VMS.) If no matches are

found, the specification is assumed to be a literal

filename; and if that also fails, the suffix .zip is

appended. Note that self-extracting ZIP files are sup-

ported, as with any other ZIP archive; just specify the

.exe suffix (if any) explicitly.

[file(s)]

An optional list of archive members to be processed,

Info-ZIP Last change: 28 Aug 94 (v5.12) 1

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

separated by spaces. (VMS versions compiled with

VMSCLI defined must delimit files with commas instead.

See -v in OPTIONS below.) Regular expressions (wild-

cards) may be used to match multiple members; see

above. Again, be sure to quote expressions that would

otherwise be expanded or modified by the operating sys-

tem.

[-x xfile(s)]

123

An optional list of archive members to be excluded from

processing. Since wildcard characters match directory

separators (`/'), this option may be used to exclude

any files which are in subdirectories. For example,

``unzip foo *.[ch] -x */*'' would extract all C source

files in the main directory, but none in any subdirec-

tories. Without the -x option, all C source files in

all directories within the zipfile would be extracted.

[-d exdir]

An optional directory to which to extract files. By

default, all files and subdirectories are recreated in

the current directory; the -d option allows extraction

in an arbitrary directory (always assuming one has per-

mission to write to the directory). This option need

not appear at the end of the command line; it is also

accepted immediately after the zipfile specification,

or between the file(s) and the -x option. The option

and directory may be concatenated without any white

space between them, but note that this may cause normal

shell behavior to be suppressed. In particular,

``-d ~'' (tilde) is expanded by Unix C shells into the

name of the user's home directory, but ``-d~'' is

treated as a literal subdirectory ``~'' of the current

directory.

OPTIONS

Note that, in order to support obsolescent hardware, unzip's

usage screen is limited to 22 or 23 lines and should there-

fore be considered a reminder of the basic unzip syntax

rather than an exhaustive list of all possible flags.

-Z zipinfo(1L) mode. If the first option on the command

line is -Z, the remaining options are taken to be

zipinfo(1L) options. See the appropriate manual page

for a description of these options.

-c extract files to stdout/screen (``CRT''). This option

is similar to the -p option except that the name of

124

each file is printed as it is extracted, the -a option

is allowed, and ASCII-EBCDIC conversion is automati-

cally performed if appropriate. This option is not

listed in the unzip usage screen.

Info-ZIP Last change: 28 Aug 94 (v5.12) 2

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

-f freshen existing files, i.e., extract only those files

which already exist on disk and which are newer than

the disk copies. By default unzip queries before

overwriting, but the -o option may be used to suppress

the queries. Note that under many operating systems,

the TZ (timezone) environment variable must be set

correctly in order for -f and -u to work properly

(under Unix the variable is usually set automatically).

The reasons for this are somewhat subtle but have to do

with the differences between DOS-format file times

(always local time) and Unix-format times (always in

GMT) and the necessity to compare the two. A typical

TZ value is ``PST8PDT'' (US Pacific time with automatic

adjustment for Daylight Savings Time or ``summer

time'').

-l list archive files (short format). The names,

uncompressed file sizes and modification dates and

times of the specified files are printed, along with

totals for all files specified. In addition, the zip-

file comment and individual file comments (if any) are

displayed. If a file was archived from a single-case

file system (for example, the old MS-DOS FAT file sys-

tem) and the -L option was given, the filename is con-

verted to lowercase and is prefixed with a caret (^).

-p extract files to pipe (stdout). Nothing but the file

data is sent to stdout, and the files are always

extracted in binary format, just as they are stored (no

conversions).

125

-t test archive files. This option extracts each speci-

fied file in memory and compares the CRC (cyclic redun-

dancy check, an enhanced checksum) of the expanded file

with the original file's stored CRC value.

-u update existing files and create new ones if needed.

This option performs the same function as the -f

option, extracting (with query) files which are newer

than those with the same name on disk, and in addition

it extracts those files which do not already exist on

disk. See -f above for information on setting the

timezone properly.

-v be verbose or print diagnostic version info. This

option has evolved and now behaves as both an option

and a modifier. As an option it has two purposes:

when a zipfile is specified with no other options, -v

lists archive files verbosely, adding to the -l info

the compression method, compressed size, compression

ratio and 32-bit CRC. When no zipfile is specified

(that is, the complete command is simply ``unzip -v''),

Info-ZIP Last change: 28 Aug 94 (v5.12) 3

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

a diagnostic screen is printed. In addition to the

normal header with release date and version, unzip

lists the home Info-ZIP ftp site and where to find a

list of other ftp and non-ftp sites; the target operat-

ing system for which it was compiled, as well as (pos-

sibly) the hardware on which it was compiled, the com-

piler and version used, and the compilation date; any

special compilation options which might affect the

program's operation (see also DECRYPTION below); and

any options stored in environment variables which might

do the same (see ENVIRONMENT OPTIONS below). As a

modifier it works in conjunction with other options

126

(e.g., -t) to produce more verbose or debugging output;

this is not yet fully implemented but will be in future

releases.

-z display only the archive comment.

MODIFIERS

-a convert text files. Ordinarily all files are extracted

exactly as they are stored (as ``binary'' files). The

-a option causes files identified by zip as text files

(those with the `t' label in zipinfo listings, rather

than `b') to be automatically extracted as such, con-

verting line endings, end-of-file characters and the

character set itself as necessary. (For example, Unix

files use line feeds (LFs) for end-of-line (EOL) and

have no end-of-file (EOF) marker; Macintoshes use car-

riage returns (CRs) for EOLs; and most PC operating

systems use CR+LF for EOLs and control-Z for EOF. In

addition, IBM mainframes and the Michigan Terminal Sys-

tem use EBCDIC rather than the more common ASCII char-

acter set, and NT supports Unicode.) Note that zip's

identification of text files is by no means perfect;

some ``text'' files may actually be binary and vice

versa. unzip therefore prints ``[text]'' or

``[binary]'' as a visual check for each file it

extracts when using the -a option. The -aa option

forces all files to be extracted as text, regardless of

the supposed file type.

-b treat all files as binary (no text conversions). This

is a shortcut for ---a.

-C match filenames case-insensitively. unzip's philosophy

is ``you get what you ask for'' (this is also responsi-

ble for the -L/-U change; see the relevant options

below). Because some filesystems are fully case-

sensitive (notably those under the Unix operating sys-

tem) and because both ZIP archives and unzip itself are

portable across platforms, unzip's default behavior is

127

to match both wildcard and literal filenames case-

Info-ZIP Last change: 28 Aug 94 (v5.12) 4

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

sensitively. That is, specifying ``makefile'' on the

command line will only match ``makefile'' in the

archive, not ``Makefile'' or ``MAKEFILE'' (and simi-

larly for wildcard specifications). Since this does

not correspond to the behavior of many other

operating/file systems (for example, OS/2 HPFS which

preserves mixed case but is not sensitive to it), the

-C option may be used to force all filename matches to

be case-insensitive. In the example above, all three

files would then match ``makefile'' (or ``make*'', or

similar). The -C option affects files in both the nor-

mal file list and the excluded-file list (xlist).

-j junk paths. The archive's directory structure is not

recreated; all files are deposited in the extraction

directory (by default, the current one).

-L convert to lowercase any filename originating on an

uppercase-only operating system or filesystem. (This

was unzip's default behavior in releases prior to 5.11;

the new default behavior is identical to the old

behavior with the -U option, which is now obsolete and

will be removed in a future release.) Depending on the

archiver, files archived under single-case filesystems

(VMS, old MS-DOS FAT, etc.) may be stored as all-

uppercase names; this can be ugly or inconvenient when

extracting to a case-preserving filesystem such as OS/2

HPFS or a case-sensitive one such as under Unix. By

default unzip lists and extracts such filenames exactly

as they're stored (excepting truncation, conversion of

unsupported characters, etc.); this option causes the

names of all files from certain systems to be converted

to lowercase.

128

-n never overwrite existing files. If a file already

exists, skip the extraction of that file without

prompting. By default unzip queries before extracting

any file which already exists; the user may choose to

overwrite only the current file, overwrite all files,

skip extraction of the current file, skip extraction of

all existing files, or rename the current file.

-o overwrite existing files without prompting. This is a

dangerous option, so use it with care. (It is often

used with -f, however.)

-q perform operations quietly (-qq = even quieter). Ordi-

narily unzip prints the names of the files it's

extracting or testing, the extraction methods, any file

or zipfile comments which may be stored in the archive,

and possibly a summary when finished with each archive.

The -q[q] options suppress the printing of some or all

Info-ZIP Last change: 28 Aug 94 (v5.12) 5

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

of these messages.

-s [OS/2, NT, MS-DOS] convert spaces in filenames to

underscores. Since all PC operating systems allow

spaces in filenames, unzip by default extracts

filenames with spaces intact (e.g., ``EA DATA. SF'').

This can be awkward, however, since MS-DOS in particu-

lar does not gracefully support spaces in filenames.

Conversion of spaces to underscores can eliminate the

awkwardness in some cases.

-U (obsolete; to be removed in a future release) leave

filenames uppercase if created under MS-DOS, VMS, etc.

See -L above.

129

-V retain (VMS) file version numbers. VMS files can be

stored with a version number, in the format

file.ext;##. By default the ``;##'' version numbers

are stripped, but this option allows them to be

retained. (On filesystems which limit filenames to

particularly short lengths, the version numbers may be

truncated or stripped regardless of this option.)

-X [VMS] restore owner/protection info (may require system

privileges). Ordinary file attributes are always

restored, but this option allows UICs to be restored as

well. [The next version of unzip will support Unix

UID/GID info as well, and possibly NT permissions.]

-$ [MS-DOS, OS/2, NT, Amiga] restore the volume label if

the extraction medium is removable (e.g., a diskette).

Doubling the option (-$$) allows fixed media (hard

disks) to be labelled as well. By default, volume

labels are ignored.

ENVIRONMENT OPTIONS

unzip's default behavior may be modified via options placed

in an environment variable. This can be done with any

option, but it is probably most useful with the -a, -L, -C,

-q, -o, or -n modifiers: make unzip auto-convert text files

by default, make it convert filenames from uppercase systems

to lowercase, make it match names case-insensitively, make

it quieter, or make it always overwrite or never overwrite

files as it extracts them. For example, to make unzip act

as quietly as possible, only reporting errors, one would use

one of the following commands:

UNZIP=-qq; export UNZIP Unix Bourne shell

setenv UNZIP -qq Unix C shell

set UNZIP=-qq OS/2 or MS-DOS

define UNZIP_OPTS "-qq" VMS (quotes for lowercase)

Info-ZIP Last change: 28 Aug 94 (v5.12) 6

130

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

Environment options are, in effect, considered to be just

like any other command-line options, except that they are

effectively the first options on the command line. To over-

ride an environment option, one may use the ``minus opera-

tor'' to remove it. For instance, to override one of the

quiet-flags in the example above, use the command

unzip --q[other options] zipfile

The first hyphen is the normal switch character, and the

second is a minus sign, acting on the q option. Thus the

effect here is to cancel one quantum of quietness. To can-

cel both quiet flags, two (or more) minuses may be used:

unzip -t--q zipfile

unzip ---qt zipfile

(the two are equivalent). This may seem awkward or confus-

ing, but it is reasonably intuitive: just ignore the first

hyphen and go from there. It is also consistent with the

behavior of Unix nice(1).

As suggested by the examples above, the default variable

names are UNZIP_OPTS for VMS (where the symbol used to

install unzip as a foreign command would otherwise be con-

fused with the environment variable), and UNZIP for all

other operating systems. For compatibility with zip(1L),

UNZIPOPT is also accepted (don't ask). If both UNZIP and

UNZIPOPT are defined, however, UNZIP takes precedence.

unzip's diagnostic option (-v with no zipfile name) can be

used to check the values of all four possible unzip and

zipinfo environment variables.

The timezone variable (TZ) should be set according to the

local timezone in order for the -f and -u to operate

correctly. See the description of -f above for details.

This variable may also be necessary in order for timestamps

131

on extracted files to be set correctly.

DECRYPTION

Encrypted archives are fully supported by Info-ZIP software,

but due to United States export restrictions, the encryption

and decryption sources are not packaged with the regular

unzip and zip distributions. Since the crypt sources were

written by Europeans, however, they are freely available at

sites throughout the world; see the file ``Where'' in any

Info-ZIP source or binary distribution for locations both

inside and outside the US.

Because of the separate distribution, not all compiled ver-

sions of unzip support decryption. To check a version for

crypt support, either attempt to test or extract an

Info-ZIP Last change: 28 Aug 94 (v5.12) 7

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

encrypted archive, or else check unzip's diagnostic screen

(see the -v option above) for ``[decryption]'' as one of the

special compilation options.

There are no runtime options for decryption; if a zipfile

member is encrypted, unzip will prompt for the password

without echoing what is typed. unzip continues to use the

same password as long as it appears to be valid; it does

this by testing a 12-byte header. The correct password will

always check out against the header, but there is a 1-in-256

chance that an incorrect password will as well. (This is a

security feature of the PKWARE zipfile format; it helps

prevent brute-force attacks which might otherwise gain a

large speed advantage by testing only the header.) In the

case that an incorrect password is given but it passes the

header test anyway, either an incorrect CRC will be gen-

erated for the extracted data or else unzip will fail during

the extraction because the ``decrypted'' bytes do not con-

stitute a valid compressed data stream.

132

If the first password fails the header check on some file,

unzip will prompt for another password, and so on until all

files are extracted. If a password is not known, entering a

null password (that is, just a carriage return) is taken as

a signal to skip all further prompting. Only unencrypted

files in the archive(s) will thereafter be extracted.

(Actually that's not quite true; older versions of zip(1L)

and zipcloak(1L) allowed null passwords, so unzip checks

each encrypted file to see if the null password works. This

may result in ``false positives'' and extraction errors, as

noted above.)

Note that there is presently no way to avoid interactive

decryption. This is another security feature: plaintext

passwords given on the command line or stored in files con-

stitute a risk because they may be seen by others. Future

releases may (under protest, with great disapproval) support

such shenanigans.

EXAMPLES

To use unzip to extract all members of the archive

letters.zip into the current directory and subdirectories

below it, creating any subdirectories as necessary:

unzip letters

To extract all members of letters.zip into the current

directory only:

unzip -j letters

Info-ZIP Last change: 28 Aug 94 (v5.12) 8

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

To test letters.zip, printing only a summary message indi-

cating whether the archive is OK or not:

133

unzip -tq letters

To test all zipfiles in the current directory, printing only

the summaries:

unzip -tq *.zip

(The backslash before the asterisk is only required if the

shell expands wildcards, as in Unix; double quotes could

have been used instead, as in the source examples

below.) To extract to standard output all members of

letters.zip whose names end in .tex, auto-converting to the

local end-of-line convention and piping the output into

more(1):

unzip -ca letters *.tex | more

To extract the binary file paper1.dvi to standard output and

pipe it to a printing program:

unzip -p articles paper1.dvi | dvips

To extract all FORTRAN and C source files--*.f, *.c, *.h,

and Makefile--into the /tmp directory:

unzip source.zip "*.[fch]" Makefile -d /tmp

(the double quotes are necessary only in Unix and only if

globbing is turned on). To extract all FORTRAN and C source

files, regardless of case (e.g., both *.c and *.C, and any

makefile, Makefile, MAKEFILE or similar):

unzip -C source.zip "*.[fch]" makefile -d /tmp

To extract any such files but convert any uppercase MS-DOS

or VMS names to lowercase and convert the line-endings of

all of the files to the local standard (without respect to

any files which might be marked ``binary''):

134

unzip -aaCL source.zip "*.[fch]" makefile -d /tmp

To extract only newer versions of the files already in the

current directory, without querying (NOTE: be careful of

unzipping in one timezone a zipfile created in another--ZIP

archives to date contain no timezone information, and a

``newer'' file from an eastern timezone may, in fact, be

older):

Info-ZIP Last change: 28 Aug 94 (v5.12) 9

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

unzip -fo sources

To extract newer versions of the files already in the

current directory and to create any files not already there

(same caveat as previous example):

unzip -uo sources

To display a diagnostic screen showing which unzip and

zipinfo options are stored in environment variables, whether

decryption support was compiled in, the compiler with which

unzip was compiled, etc.:

unzip -v

In the last five examples, assume that UNZIP or UNZIP_OPTS

is set to -q. To do a singly quiet listing:

unzip -l file.zip

To do a doubly quiet listing:

unzip -ql file.zip

(Note that the ``.zip'' is generally not necessary.) To do

a standard listing:

135

unzip --ql file.zip

or

unzip -l-q file.zip

or

unzip -l--q file.zip (extra minuses don't hurt)

TIPS

The current maintainer, being a lazy sort, finds it very

useful to define a pair of aliases: tt for ``unzip -tq''

and ii for ``unzip -Z'' (or ``zipinfo''). One may then sim-

ply type ``tt zipfile'' to test an archive, something which

is worth making a habit of doing. With luck unzip will

report ``No errors detected in zipfile.zip,'' after which

one may breathe a sigh of relief.

The maintainer also finds it useful to set the UNZIP

environment variable to ``-aL'' and is tempted to add ``-C''

as well. His ZIPINFO variable is set to ``-z''.

DIAGNOSTICS

The exit status (or error level) approximates the exit codes

defined by PKWARE and takes on the following values, except

under VMS:

0 normal; no errors or warnings detected.

Info-ZIP Last change: 28 Aug 94 (v5.12) 10

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

1 one or more warning errors were encountered, but

processing completed successfully anyway. This

includes zipfiles where one or more files was

skipped due to unsupported compression method or

encryption with an unknown password.

2 a generic error in the zipfile format was

detected. Processing may have completed success-

136

fully anyway; some broken zipfiles created by

other archivers have simple work-arounds.

3 a severe error in the zipfile format was detected.

Processing probably failed immediately.

4-8 unzip was unable to allocate memory for one or

more buffers.

9 the specified zipfiles were not found.

10 invalid options were specified on the command

line.

11 no matching files were found.

50 the disk is (or was) full during extraction.

51 the end of the ZIP archive was encountered prema-

turely.

VMS interprets standard Unix (or PC) return values as other,

scarier-looking things, so by default unzip always returns 0

(which reportedly gets converted into a VMS status of 1--

i.e., success). There are two compilation options available

to modify or expand upon this behavior: defining

RETURN_CODES results in a human-readable explanation of what

the real error status was (but still with a faked ``suc-

cess'' exit value), while defining RETURN_SEVERITY causes

unzip to exit with a ``real'' VMS status. The latter

behavior will become the default in future versions unless

it is found to conflict with officially defined VMS codes.

The current mapping is as follows: 1 (success) for normal

exit, 0x7fff0001 for warning errors, and (0x7fff000? +

16*normal_unzip_exit_status) for all other errors, where the

`?' is 2 (error) for unzip values 2 and 9-11, and 4 (fatal

error) for the remaining ones (3-8, 50, 51). Check the

``unzip -v'' output to see whether RETURN_SEVERITY was

defined at compilation time.

137

BUGS

When attempting to extract a corrupted archive, unzip may go

into an infinite loop and, if not stopped quickly enough,

fill all available disk space. Compiling with CHECK_EOF

Info-ZIP Last change: 28 Aug 94 (v5.12) 11

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

should fix this problem for all zipfiles, but the option was

introduced too late in the testing process to be made the

default behavior. Future versions will be robust enough to

fail gracefully on damaged archives. Check the ``unzip -v''

output to see whether CHECK_EOF was defined during compila-

tion.

[MS-DOS] When extracting or testing files from an archive on

a defective floppy diskette, if the ``Fail'' option is

chosen from DOS's ``Abort, Retry, Fail?'' message, unzip may

hang the system, requiring a reboot. Instead, press

control-C (or control-Break) to terminate unzip.

Under DEC Ultrix, unzip will sometimes fail on long zipfiles

(bad CRC, not always reproducible). This is apparently due

either to a hardware bug (cache memory) or an operating sys-

tem bug (improper handling of page faults?).

Dates and times of stored directories are not restored.

[OS/2] Extended attributes for existing directories are

never updated. This is a limitation of the operating sys-

tem; unzip has no way to determine whether the stored attri-

butes are newer or older than the existing ones.

[VMS] When extracting to another directory, only the [.foo]

syntax is accepted for the -d option; the simple Unix foo

syntax is silently ignored (as is the less common VMS

foo.dir syntax).

138

[VMS] When the file being extracted already exists, unzip's

query only allows skipping, overwriting or renaming; there

should additionally be a choice for creating a new version

of the file. In fact, the ``overwrite'' choice does create

a new version; the old version is not overwritten or

deleted.

SEE ALSO

funzip(1L), zip(1L), zipcloak(1L), zipgrep(1L), zipinfo(1L),

zipnote(1L), zipsplit(1L)

AUTHORS

The primary Info-ZIP authors (current zip-bugs workgroup)

are: Jean-loup Gailly (Zip); Greg R. Roelofs (UnZip); Mark

Adler (decompression, fUnZip); Kai Uwe Rommel (OS/2); Igor

Mandrichenko and Hunter Goatley (VMS); John Bush and Paul

Kienitz (Amiga); Antoine Verheijen (Macintosh); Chris Her-

borth (Atari); Henry Gessau (NT); Karl Davis, Sergio Monesi

and Evan Shattock (Acorn Archimedes); and Robert Heath (Win-

dows). The author of the original unzip code upon which

Info-ZIP's is based was Samuel H. Smith; Carl Mascott did

the first Unix port; and David P. Kirschbaum organized and

Info-ZIP Last change: 28 Aug 94 (v5.12) 12

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

led Info-ZIP in its early days. The full list of contribu-

tors to UnZip has grown quite large; please refer to the

CONTRIBS file in the UnZip source distribution for a rela-

tively complete version.

VERSIONS

v1.2 15 Mar 89 Samuel H. Smith

v2.0 9 Sep 89 Samuel H. Smith

v2.x fall 1989 many Usenet contributors

v3.0 1 May 90 Info-ZIP (DPK, consolidator)

v3.1 15 Aug 90 Info-ZIP (DPK, consolidator)

139

v4.0 1 Dec 90 Info-ZIP (GRR, maintainer)

v4.1 12 May 91 Info-ZIP

v4.2 20 Mar 92 Info-ZIP (zip-bugs subgroup, GRR)

v5.0 21 Aug 92 Info-ZIP (zip-bugs subgroup, GRR)

v5.01 15 Jan 93 Info-ZIP (zip-bugs subgroup, GRR)

v5.1 7 Feb 94 Info-ZIP (zip-bugs subgroup, GRR)

v5.11 2 Aug 94 Info-ZIP (zip-bugs subgroup, GRR)

v5.12 28 Aug 94 Info-ZIP (zip-bugs subgroup, GRR)

Info-ZIP Last change: 28 Aug 94 (v5.12) 13

H dat2text.c

#include <stdio.h>

struct rec

{

char time1[4]; /*UT in HHMM format*/

float tau1; /*tipping scan opacity*/

float sigmatau1; /*tipping scan rms*/

float tauz1; /*Zenith Opacity*/

float Vz1; /*Zenith mean voltage*/

float GainZ1; /*Zenith gain correction*/

float sigmaVz1; /*Zenith rms voltage measurement*/

float gain1; /*assumed gain*/

float tauI1; /*iterated opacity*/

float sigtauI1; /*iterated opacity rms*/

float gainI1; /*iterated gain*/

float Tamb1; /*Ambient Temperature*/

float Tc; /*Cold load temperature*/

float Th; /*Hot load temperature*/

float x1[11],y1[11],z1[11],G1[11]; /*airmass, ln(vsd), rms(vsd)*/

};

float swapbytes();

void usage();

main(argc,argv)

140

int argc;

char *argv[];

{

struct rec r;

FILE * fp;

char padding;

float time;

float lasttime = 0;

char num[3];

int i;

if(argc!=2) usage();

num[2] = '\0';

if((fp = fopen(argv[1],''rb''))==NULL)

{

fprintf(stderr,''File not found: %s\n'',argv[1]);

exit(1);

}

while((fread(&padding,sizeof(char),1,fp)==1) &&

(fread(&r,sizeof(struct rec),1,fp))==1)

{

num[0] = r.time1[0];

num[1] = r.time1[1];

time = (float) atoi(num);

num[0] = r.time1[2];

num[1] = r.time1[3];

time += ((float) atoi(num))/60;

if((time>22)&&(time<lasttime)) time = 24;

printf(``%7.3f %8.4f %8.4f %8.4f %8.4f %8.4f %7.3f %7.3f

%%7.3f\n'',

time,swapbytes(&r.tau1),swapbytes(&r.sigmatau1),

swapbytes(&r.tauz1),

swapbytes(&r.tauI1),swapbytes(&r.sigtauI1),swapbytes(&r.gain1),

swapbytes(&r.GainZ1),swapbytes(&r.gainI1));

lasttime = time;

}

fclose(fp);

}

141

void usage()

{

fprintf(stderr,''Usage:\n dat2text filename\n'');

exit(1);

}

float swapbytes(x)

float *x;

{

char *ptr;

char c;

ptr = (char *) x;

c = ptr[0];

ptr[0] = ptr[3];

ptr[3] = c;

c = ptr[1];

ptr[1] = ptr[2];

ptr[2] = c;

return(*x);

}

I mon2text.c

#include <stdio.h>

struct rec

{

char time1[4]; /*UT in HHMM format*/

float m1[16]; /*Analog monitor data*/

};

float swapbytes();

void usage();

main(argc,argv)

142

int argc;

char *argv[];

{

struct rec r;

FILE * fp;

char padding;

short dmon2;

float time;

float lasttime = 0;

char num[3];

int i;

if(argc!=2) usage();

num[2] = '\0';

if((fp = fopen(argv[1],''rb''))==NULL)

{

fprintf(stderr,''File not found: %s\n'',argv[1]);

exit(1);

}

while((fread(&padding,sizeof(char),1,fp)==1) &&

(fread(&r,sizeof(struct rec),1,fp)==1) &&

(fread(&dmon2,sizeof(short),1,fp)==1))

{

num[0] = r.time1[0];

num[1] = r.time1[1];

time = (float) atoi(num);

num[0] = r.time1[2];

num[1] = r.time1[3];

time += ((float) atoi(num))/60;

if((time>22)&&(time<lasttime)) time = 24;

printf(``%7.3f ``,time);

for(i=0;i<16;i++)

printf(``%7.3f ``,swapbytes(&r.m1[i]));

printf(``\n'');

lasttime = time;

}

fclose(fp);

}

143

void usage()

{

fprintf(stderr,''Usage:\n mon2text filename\n'');

exit(1);

}

float swapbytes(x)

float *x;

{

char *ptr;

char c;

ptr = (char *) x;

c = ptr[0];

ptr[0] = ptr[3];

ptr[3] = c;

c = ptr[1];

ptr[1] = ptr[2];

ptr[2] = c;

return(*x);

}

J Cplots.csh

#!/bin/csh

echo -n ``Chile Automatic Data Plotting: Started ``

date

set tmp = tmp$$

cd $work/tipper/Chile

set dates

set dates = `awk '{printf(``%s ``,$1)}' newdat.log`

foreach d ($dates)

set yymm = `echo $d | awk '{printf(``%s'',substr($1,1,4))}'`

set flen = `wc -l archive/$yymm/$d.dat | awk '{print $1}'`

144

if ($flen > 10) then

tauplot.csh $d $tmp.1/gif

giftrans -g '#ffffff=#ff0000' $tmp.1 > $tmp.2

giftrans -g '#000000=#ffffff' $tmp.2 > $tmp.3

giftrans -g '#ff0000=#000000' $tmp.3 > $tmp.4

giftrans -t '#ffffff' $tmp.4 > $d.tau.C.gif

rm $tmp.*

mv $d.tau.C.gif /home/dietcoke/sfoster/public_html/tipper

endif

end

rm newdat.log

set dates

set dates = `awk '{printf(``%s ``,$1)}' newmon.log`

foreach d ($dates)

set yymm = `echo $d | awk '{printf(``%s'',substr($1,1,4))}'`

set flen = `wc -l archive/$yymm/$d.mon | awk '{print $1}'`

if ($flen > 10) then

monplot.csh $d $tmp.1/vgif $tmp.5/vgif

giftrans -g '#ffffff=#ff0000' $tmp.1 > $tmp.2

giftrans -g '#000000=#ffffff' $tmp.2 > $tmp.3

giftrans -g '#ff0000=#000000' $tmp.3 > $tmp.4

giftrans -t '#ffffff' $tmp.4 > $d.mona.C.gif

giftrans -g '#ffffff=#ff0000' $tmp.5 > $tmp.6

giftrans -g '#000000=#ffffff' $tmp.6 > $tmp.7

giftrans -g '#ff0000=#000000' $tmp.7 > $tmp.8

giftrans -t '#ffffff' $tmp.8 > $d.monb.C.gif

rm $tmp.*

mv $d.mona.C.gif /home/dietcoke/sfoster/public_html/tipper

mv $d.monb.C.gif /home/dietcoke/sfoster/public_html/tipper

endif

end

rm newmon.log

set dates

set dates = `awk '{printf(``%s ``,$1)}' newtxt.log`

foreach d ($dates)

set yymm = `echo $d | awk '{printf(``%s'',substr($1,1,4))}'`

txtplot.csh $d $tmp.1/gif

145

giftrans -g '#ffffff=#ff0000' $tmp.1 > $tmp.2

giftrans -g '#000000=#ffffff' $tmp.2 > $tmp.3

giftrans -g '#ff0000=#000000' $tmp.3 > $tmp.4

giftrans -t '#ffffff' $tmp.4 > $d.txt.C.gif

rm $tmp.*

mv $d.txt.C.gif /home/dietcoke/sfoster/public_html/tipper

end

rm newtxt.log

rm newout.log

set dates

set dates = `awk '{printf(``%s ``,$1)}' newwnd.log`

foreach d ($dates)

set yymm = `echo $d | awk '{printf(``%s'',substr($1,1,4))}'`

wndplot.csh $d $tmp.1/gif

giftrans -g '#ffffff=#ff0000' $tmp.1 > $tmp.2

giftrans -g '#000000=#ffffff' $tmp.2 > $tmp.3

giftrans -g '#ff0000=#000000' $tmp.3 > $tmp.4

giftrans -t '#ffffff' $tmp.4 > $d.wnd.C.gif

rm $tmp.*

mv $d.wnd.C.gif /home/dietcoke/sfoster/public_html/tipper

end

set dates

set dates = `awk '{printf(``%s ``,$1)}' newwnd.log`

foreach d ($dates)

set yymm = `echo $d | awk '{printf(``%s'',substr($1,1,4))}'`

wdrplot.csh $d $tmp.1/gif

giftrans -g '#ffffff=#ff0000' $tmp.1 > $tmp.2

giftrans -g '#000000=#ffffff' $tmp.2 > $tmp.3

giftrans -g '#ff0000=#000000' $tmp.3 > $tmp.4

giftrans -t '#ffffff' $tmp.4 > $d.wdr.C.gif

rm $tmp.*

mv $d.wdr.C.gif /home/dietcoke/sfoster/public_html/tipper

end

rm newwnd.log

echo -n ``Chile Automatic Data Plotting: Finished ``

146

date

K MKdata.csh

#!/bin/csh

echo -n ``Mauna Kea Automatic Data Retrieval: Started ``

date

umask 002

set tmp = tmp$$

cd $work/tipper/MaunaKea

ftp tipper.vlba.nrao.edu >& /dev/null

if (!(-e pickup.zip)) then

echo Error: ftp did not recover a data file from the tipper.

ping tipper.vlba.nrao.edu

goto endscript

endif

if (-e pickup.zip) then

unzip -a -L -o pickup.zip >& /dev/null

rm pickup.zip

rm glob*

set phi = `ls | grep -i ``.phi'' | wc -l`

if ($phi != 0) rm *.phi

endif

if (-e newmon.log) mv newmon.log $tmp.newmon

if (-e newdat.log) mv newdat.log $tmp.newdat

if (-e newtxt.log) mv newtxt.log $tmp.newtxt

if (-e newout.log) mv newout.log $tmp.newout

set mon = `ls | grep ``.mom'' | wc -l`

if ($mon != 0) then

foreach f (*.mom)

set date = `echo $f | awk '{printf(``%s\n'',substr($1,1,6))}'`

set yymm = `echo $date | awk '{printf(``%s'',substr($1,1,4))}'`

echo $date >> $tmp.newmon

147

if(! -e rawarchive/$yymm) mkdir rawarchive/$yymm

mv $f rawarchive/$yymm

end

endif

set dat = `ls | grep ``.dam'' | wc -l`

if ($dat != 0) then

foreach f (*.dam)

set date = `echo $f | awk '{printf(``%s\n'',substr($1,1,6))}'`

echo $date >> $tmp.newdat

mv $f rawdata

end

endif

set text = `ls | grep ``.txm'' | wc -l`

if ($text != 0) then

foreach f (*.txm)

set date = `echo $f | awk '{printf(``%s\n'',substr($1,1,6))}'`

set base = `echo $f | awk '{printf(``%s\n'',substr($1,1,8))}'`

set yymm = `echo $date | awk '{printf(``%s'',substr($1,1,4))}'`

echo $date >> $tmp.newtxt

if(! -e archive/$yymm) mkdir archive/$yymm

cp $base.txm archive/$yymm/$base.txt

if(! -e rawarchive/$yymm) mkdir rawarchive/$yymm

mv $f rawarchive/$yymm

end

endif

set out = `ls | grep ``.oum'' | wc -l`

if ($out != 0) then

foreach f (*.oum)

set date = `echo $f | awk '{printf(``%s\n'',substr($1,1,6))}'`

set base = `echo $f | awk '{printf(``%s\n'',substr($1,1,8))}'`

set yymm = `echo $date | awk '{printf(``%s'',substr($1,1,4))}'`

echo $date >> $tmp.newout

if(! -e archive/$yymm) mkdir archive/$yymm

cp $f archive/$yymm/$base.out

end

mv *.oum rawdata

148

endif

awk -f plotlog.awk $tmp.newdat > newdat.log

awk -f plotlog.awk $tmp.newmon > newmon.log

awk -f plotlog.awk $tmp.newtxt > newtxt.log

awk -f plotlog.awk $tmp.newout > newout.log

if (-e newmon.log) then

set dates = `awk '{printf(``%s ``,$1)}' newmon.log`

foreach d ($dates)

set yymm = `echo $d | awk '{printf(``%s'',substr($1,1,4))}'`

set mon = `ls rawarchive/$yymm | grep $d | grep ``.mom'' | wc -l`

if ($mon != 0) then

foreach f (rawarchive/$yymm/$d*.mom)

mon2text $f >> $d.mon

end

endif

if(! -e archive/$yymm) mkdir archive/$yymm

mv $d.mon archive/$yymm

end

endif

if (-e newdat.log) then

set dates = `awk '{printf(``%s ``,$1)}' newdat.log`

foreach d ($dates)

set yymm = `echo $d | awk '{printf(``%s'',substr($1,1,4))}'`

set dat = `ls rawarchive/$yymm | grep $d | grep ``.dam'' | wc -l`

if ($dat != 0) then

foreach f (rawarchive/$yymm/$d*.dam)

dat2text $f >> $d.dat

end

endif

set dat = `ls rawdata | grep $d | grep ``.dam'' | wc -l`

if ($dat != 0) then

foreach f (rawdata/$d*.dam)

dat2text $f >> $d.dat

end

endif

if(! -e archive/$yymm) mkdir archive/$yymm

149

mv $d.dat archive/$yymm

end

endif

#

Retrieve MK Weather Data from Socorro (see .netrc)

#

ftp -i ftp.aoc.nrao.edu >& /dev/null

foreach f (*.wea)

set yymm = `echo $f | awk '{printf(``%s'',substr($1,1,4))}'`

mv $f archive/$yymm

end

endscript:

rm $tmp.*

echo -n ``Mauna Kea Automatic Data Retrieval: Finished ``

date

L MKwdata.csh

#!/bin/csh

echo -n ``MK Automatic Weather Data Retrieval: Started ``

date

umask 002

cd $work/tipper/MaunaKea

#

Retrieve MK Weather Data from Socorro (see .netrc)

#

ftp -i ftp.aoc.nrao.edu >& /dev/null

foreach f (*.wea)

set yymm = `echo $f | awk '{printf(``%s'',substr($1,1,4))}'`

if(! -e archive/$yymm) mkdir archive/$yymm

mv $f archive/$yymm

end

150

endscript:

echo -n ``MK Automatic Weather Data Retrieval: Finished ``

date

M MKplots.csh

#!/bin/csh

echo -n ``Mauna Kea Automatic Data Plotting: Started ``

date

set tmp = tmp$$

cd $work/tipper/MaunaKea

umask 002

set dates

set dates = `awk '{printf(``%s ``,$1)}' newdat.log`

foreach d ($dates)

set yymm = `echo $d | awk '{printf(``%s'',substr($1,1,4))}'`

set flen = `wc -l archive/$yymm/$d.dat | awk '{print $1}'`

if ($flen > 10) then

tauplot.csh $d $tmp.1/gif

giftrans -g '#ffffff=#ff0000' $tmp.1 > $tmp.2

giftrans -g '#000000=#ffffff' $tmp.2 > $tmp.3

giftrans -g '#ff0000=#000000' $tmp.3 > $tmp.4

giftrans -t '#ffffff' $tmp.4 > $d.tau.MK.gif

mv $d.tau.MK.gif /home/dietcoke/sfoster/public_html/tipper

rm $tmp.*

endif

end

rm newdat.log

set dates

set dates = `awk '{printf(``%s ``,$1)}' newmon.log`

foreach d ($dates)

151

set yymm = `echo $d | awk '{printf(``%s'',substr($1,1,4))}'`

set flen = `wc -l archive/$yymm/$d.mon | awk '{print $1}'`

if ($flen > 10) then

monplot.csh $d $tmp.1/vgif $tmp.5/vgif

giftrans -g '#ffffff=#ff0000' $tmp.1 > $tmp.2

giftrans -g '#000000=#ffffff' $tmp.2 > $tmp.3

giftrans -g '#ff0000=#000000' $tmp.3 > $tmp.4

giftrans -t '#ffffff' $tmp.4 > $d.mona.MK.gif

giftrans -g '#ffffff=#ff0000' $tmp.5 > $tmp.6

giftrans -g '#000000=#ffffff' $tmp.6 > $tmp.7

giftrans -g '#ff0000=#000000' $tmp.7 > $tmp.8

giftrans -t '#ffffff' $tmp.8 > $d.monb.MK.gif

rm $tmp.*

mv $d.mona.MK.gif /home/dietcoke/sfoster/public_html/tipper

mv $d.monb.MK.gif /home/dietcoke/sfoster/public_html/tipper

endif

end

rm newmon.log

set dates

set dates = `awk '{printf(``%s ``,$1)}' newtxt.log`

foreach d ($dates)

txtplot.csh $d $tmp.1/gif

giftrans -g '#ffffff=#ff0000' $tmp.1 > $tmp.2

giftrans -g '#000000=#ffffff' $tmp.2 > $tmp.3

giftrans -g '#ff0000=#000000' $tmp.3 > $tmp.4

giftrans -t '#ffffff' $tmp.4 > $d.txt.MK.gif

rm $tmp.*

mv $d.txt.MK.gif /home/dietcoke/sfoster/public_html/tipper

end

rm newtxt.log

rm newout.log

echo -n ``Mauna Kea Automatic Data Plotting: Finished ``

date

152

N monitor.csh

#!/bin/csh

set tmp = tmp$$

cd $work/public_html/tipper

#

Clean Up Chile Data

#

foreach f (`ls *.tau.C.gif | tail -r | tail +8`)

rm $f

end

foreach f (`ls *.mona.C.gif | tail -r | tail +8`)

rm $f

end

foreach f (`ls *.monb.C.gif | tail -r | tail +8`)

rm $f

end

foreach f (`ls *.txt.C.gif | tail -r | tail +8`)

rm $f

end

foreach f (`ls *.wnd.C.gif | tail -r | tail +8`)

rm $f

end

foreach f (`ls *.wdr.C.gif | tail -r | tail +8`)

rm $f

end

#

Clean Up Mauna Kea Data

#

foreach f (`ls *.tau.MK.gif | tail -r | tail +8`)

rm $f

end

foreach f (`ls *.mona.MK.gif | tail -r | tail +8`)

rm $f

end

foreach f (`ls *.monb.MK.gif | tail -r | tail +8`)

153

rm $f

end

foreach f (`ls *.txt.MK.gif | tail -r | tail +8`)

rm $f

end

#

Chile Tau Plots

#

foreach f (*.tau.C.gif)

set date = `echo $f | awk '{printf(``%s'',substr($1,1,6))}'`

cat << EOF > ``$f:r''.html

<HEAD>

<TITLE>Chile Tau Plot</TITLE><P ALIGN=CENTER>

</HEAD>

<BODY bgcolor=#f0f0f0 vlink=30b420>

<P ALIGN=CENTER>

<ADDRESS>

sfoster@nrao.edu

</ADDRESS>

</BODY>

EOF

echo $date >> $tmp.1

end

#

Chile Mon Plots

#

foreach f (*.mona.C.gif)

set date = `echo $f | awk '{printf(``%s'',substr($1,1,6))}'`

cat << EOF > $date.mon.C.html

<HEAD>

<TITLE>Chile Monitor Plots</TITLE><P ALIGN=CENTER>

</HEAD>

<BODY bgcolor=#f0f0f0 vlink=30b420>

<P ALIGN=CENTER>

<P ALIGN=CENTER>

<ADDRESS>

154

sfoster@nrao.edu

</ADDRESS>

</BODY>

EOF

end

#

Chile Txt Plots

#

foreach f (*.txt.C.gif)

cat << EOF > ``$f:r''.html

<HEAD>

<TITLE>Chile Text Plots</TITLE><P ALIGN=CENTER>

</HEAD>

<BODY bgcolor=#f0f0f0 vlink=30b420>

<P ALIGN=CENTER>

<ADDRESS>

sfoster@nrao.edu

</ADDRESS>

</BODY>

EOF

end

#

Chile Wnd Plots

#

foreach f (*.wnd.C.gif)

cat << EOF > ``$f:r''.html

<HEAD>

<TITLE>Chile Wind Speed Data Plots</TITLE><P ALIGN=CENTER>

</HEAD>

<BODY bgcolor=#f0f0f0 vlink=30b420>

<P ALIGN=CENTER>

<ADDRESS>

sfoster@nrao.edu

</ADDRESS>

</BODY>

EOF

end

155

#

Chile Wdr Plots

#

foreach f (*.wdr.C.gif)

cat << EOF > ``$f:r''.html

<HEAD>

<TITLE>Chile Wind Direction Data Plots</TITLE><P ALIGN=CENTER>

</HEAD>

<BODY bgcolor=#f0f0f0 vlink=30b420>

<P ALIGN=CENTER>

<ADDRESS>

sfoster@nrao.edu

</ADDRESS>

</BODY>

EOF

end

#

Mauna Kea Tau Plots

#

foreach f (*.tau.MK.gif)

set date = `echo $f | awk '{printf(``%s'',substr($1,1,6))}'`

cat << EOF > ``$f:r''.html

<HEAD>

<TITLE>Chile Tau Plot</TITLE><P ALIGN=CENTER>

</HEAD>

<BODY bgcolor=#f0f0f0 vlink=30b420>

<P ALIGN=CENTER>

<ADDRESS>

sfoster@nrao.edu

</ADDRESS>

</BODY>

EOF

echo $date >> $tmp.2

end

#

Mauna Kea Mon Plots

#

156

foreach f (*.mona.MK.gif)

set date = `echo $f | awk '{printf(``%s'',substr($1,1,6))}'`

cat << EOF > $date.mon.MK.html

<HEAD>

<TITLE>Chile Monitor Plots</TITLE><P ALIGN=CENTER>

</HEAD>

<BODY bgcolor=#f0f0f0 vlink=30b420>

<P ALIGN=CENTER>

<IMG

SRC=''http://www.tuc.nrao.edu/~sfoster/tipper/$date.monb.MK.gif''>

<P ALIGN=CENTER>

<ADDRESS>

sfoster@nrao.edu

</ADDRESS>

</BODY>

EOF

end

#

Mauna Kea Txt Plots

#

foreach f (*.txt.MK.gif)

cat << EOF > ``$f:r''.html

<HEAD>

<TITLE>Chile Text Plots</TITLE><P ALIGN=CENTER>

</HEAD>

<BODY bgcolor=#f0f0f0 vlink=30b420>

<P ALIGN=CENTER>

<ADDRESS>

sfoster@nrao.edu

</ADDRESS>

</BODY>

EOF

end

#

Build monitor.html

#

cat << EOF > monitor.html

157

<HEAD>

<TITLE>NRAO 225 GHz Tipping Radiometer Raw Data Page</TITLE>

</HEAD>

<BODY bgcolor=#f0f0f0 vlink=30b420>

<H1 ALIGN=CENTER>NRAO 225 GHz Tipping Radiometer Raw Data</H1>

<H1 ALIGN=CENTER>Chile Monitor Data</H1>

<P ALIGN=CENTER>

<CENTER>

<TABLE Border=1>

EOF

foreach date (`cat $tmp.1`)

cat << EOF >> monitor.html

<TR><TD>$date</TD>

<TD>Opacity</TD>

<TD>Monitor</TD>

<TD>Phase</TD>

<TD>Wind Speed</TD>

<TD>Wind Direction</TD></TR>

EOF

end

cat << EOF >> monitor.html

</TABLE>

</CENTER>

</P>

<H1 ALIGN=CENTER>Mauna Kea Monitor Data</H1>

<P ALIGN=CENTER>

<CENTER>

<TABLE Border=1>

EOF

foreach date (`cat $tmp.2`)

cat << EOF >> monitor.html

<TR><TD>$date</TD>

<TD>Opacity</TD>

<TD>Monitor</TD>

<TD>Phase</TD></TR>

EOF

end

cat << EOF >> monitor.html

</TABLE>

158

</CENTER>

</P>

</BODY>

EOF

rm $tmp.*

O MKweather.csh

#!/bin/csh

cd ~sfoster/MKweather

set tmp = tmp$$

set yr = `date +%y`

set mo = `date +%m`

set dy = `date +%d`

set days = (01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31)

set mon = `echo $mo | awk -f month.awk`

foreach d ($days)

if ($d > $dy) break

echo antennas MK > $tmp.sara

echo mondat /jansky/mdata/ > $tmp.sara

echo uttimerange 19yrmon$d 00:00:00 to d 24:00:00 >> $tmp.sara

echo typecode WEA >> $tmp.sara

echo sound off >> $tmp.sara

echo outfile $tmp.1 >> $tmp.sara

echo go >> $tmp.sara

echo quit >> $tmp.sara

sara < $tmp.sara >& /dev/null

awk '($1==''MK'')&&($5==''7F'') {print}' $tmp.1 > yrmo$d.wea

rm $tmp.1

end

set line = `echo $yr $mo | awk -f prev.awk`

159

set yr = $line[1]

set mo = $line[2]

set max = $line[3]

set mon = `echo $mo | awk -f month.awk`

foreach d ($days)

if ($d > $max) break

echo antennas MK > $tmp.sara

echo mondat /jansky/mdata/ > $tmp.sara

echo uttimerange 19yrmon$d 00:00:00 to d 24:00:00 >> $tmp.sara

echo typecode WEA >> $tmp.sara

echo sound off >> $tmp.sara

echo outfile $tmp.1 >> $tmp.sara

echo go >> $tmp.sara

echo quit >> $tmp.sara

sara < $tmp.sara >& /dev/null

awk '($1==''MK'')&&($5==''7F'') {print}' $tmp.1 > yrmo$d.wea

rm $tmp.1

end

rm /var/spool/ftp/pub/sfoster/*.wea

foreach f (*.wea)

if (!(-z $f)) mv $f /var/spool/ftp/pub/sfoster

end

rm $tmp.* *.wea

P tauplot.csh

#!/bin/csh

if(($#argv > 2)||($#argv == 0)) then

echo ``Usage: tauplot.csh yymmdd <device>''

exit(1)

endif

if($#argv == 1) then

set dev = ``/ps -x''

endif

if($#argv == 2) then

160

set dev = $argv[2]

endif

set date = $argv[1]

set yymm = `echo $date | awk '{printf(``%s'',substr($1,1,4))}'`

set tmp = tmp$$

echo data archive/$yymm/$date.dat > $tmp.1

cat tauplot1.aux >> $tmp.1

echo data archive/$yymm/$date.mon >> $tmp.1

cat tauplot2.aux >> $tmp.1

echo mtext B 3.2 0.5 0.5 Chile Opacities for $date >> $tmp.1

if($#argv == 2) then

echo quit >> $tmp.1

endif

wip -d $dev $tmp.1 >& /dev/null

rm $tmp.*

Q monplot.csh

#!/bin/csh

if(($#argv > 3)||($#argv == 0)) then

echo ``Usage: monplot.csh yymmdd <device> <device>''

exit(1)

endif

if($#argv == 1) then

set deva = ``/vps -x''

set devb = ``/vps -x''

endif

if($#argv == 2) then

set deva = $argv[2]

set devb = $argv[2]

endif

if($#argv == 3) then

set deva = $argv[2]

set devb = $argv[3]

161

endif

set date = $argv[1]

set yymm = `echo $date | awk '{printf(``%s'',substr($1,1,4))}'`

set tmp = tmp$$

echo data archive/$yymm/$date.mon > $tmp.1

cat monplot1.aux >> $tmp.1

echo mtext R 2.2 0.5 0.5 Chile Monitor File Data for $date >> $tmp.1

if(($#argv == 2)||($#argv == 3)) then

echo quit >> $tmp.1

endif

wip -d $deva $tmp.1 >& /dev/null

sleep 5

echo data archive/$yymm/$date.mon > $tmp.1

cat monplot2.aux >> $tmp.1

echo mtext R 2.2 0.5 0.5 Chile Monitor File Data for $date >> $tmp.1

if(($#argv == 2)||($#argv == 3)) then

echo quit >> $tmp.1

endif

wip -d $devb $tmp.1 >& /dev/null

rm $tmp.*

R txtplot.csh

#!/bin/csh

if(($#argv > 2)||($#argv == 0)) then

echo ``Usage: txtplot.csh yymmdd <device>''

exit(1)

endif

if($#argv == 1) then

set dev = ``/ps -x''

endif

if($#argv == 2) then

set dev = $argv[2]

162

endif

set date = $argv[1]

set yymm = `echo $date | awk '{printf(``%s'',substr($1,1,4))}'`

set tmp = tmp$$

set count = 1

foreach f (archive/$yymm/$date*.txt)

set fl = $f:t

set base = `echo $fl | awk '{printf(``%s\n'',substr($1,1,8))}'`

set line1 = `head -1 $f`

if ($line1[1] == Calibration) then

set crun = 1

awk '(NR>1) {printf(``%d\t%f\n'',NR-1,$1)}' $f > $tmp.$fl

if (-e archive/$yymm/$base.out) then

set endtime = `head -2 archive/$yymm/$base.out | tail -1`

else

set endtime = ``??:??''

endif

else

set crun = 0

awk '{printf(``%d\t%f\n'',NR,$1)}' $f > $tmp.$fl

if (-e archive/$yymm/$base.out) then

set endtime = `head -1 archive/$yymm/$base.out`

else

set endtime = ``??:??''

endif

endif

switch ($count)

case 1:

echo paper 11 0.77 > $tmp.wip

echo symbol 17 >> $tmp.wip

echo font 2 >> $tmp.wip

echo expand 0.5 >> $tmp.wip

echo vsize 1.5 4 5.5 7 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 2 >> $tmp.wip

163

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

if ($crun == 1) then

echo mtext T 0.5 0.05 0.0 Calibration Run >> $tmp.wip

endif

set count = 2

breaksw

case 2:

echo vsize 4.5 7 5.5 7 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 2 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

if ($crun == 1) then

echo mtext T 0.5 0.05 0.0 Calibration Run >> $tmp.wip

endif

set count = 3

breaksw

case 3:

echo vsize 7.5 10 5.5 7 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 2 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

if ($crun == 1) then

echo mtext T 0.5 0.05 0.0 Calibration Run >> $tmp.wip

endif

set count = 4

164

breaksw

case 4:

echo vsize 1.5 4 3.5 5 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 2 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

if ($crun == 1) then

echo mtext T 0.5 0.05 0.0 Calibration Run >> $tmp.wip

endif

set count = 5

breaksw

case 5:

echo vsize 4.5 7 3.5 5 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 2 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

if ($crun == 1) then

echo mtext T 0.5 0.05 0.0 Calibration Run >> $tmp.wip

endif

set count = 6

breaksw

case 6:

echo vsize 7.5 10 3.5 5 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 2 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo points >> $tmp.wip

165

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

if ($crun == 1) then

echo mtext T 0.5 0.05 0.0 Calibration Run >> $tmp.wip

endif

set count = 7

breaksw

case 7:

echo vsize 1.5 4 1.5 3 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 2 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

if ($crun == 1) then

echo mtext T 0.5 0.05 0.0 Calibration Run >> $tmp.wip

endif

set count = 8

breaksw

case 8:

echo vsize 4.5 7 1.5 3 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 2 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

if ($crun == 1) then

echo mtext T 0.5 0.05 0.0 Calibration Run >> $tmp.wip

endif

set count = 9

breaksw

case 9:

echo vsize 7.5 10 1.5 3 >> $tmp.wip

166

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 2 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

if ($crun == 1) then

echo mtext T 0.5 0.05 0.0 Calibration Run >> $tmp.wip

endif

echo vsize 1.5 10 1.5 7 >> $tmp.wip

echo expand 1 >> $tmp.wip

echo mtext T 2.0 0.5 0.5 Chile Phase Stability Tests for $date >> $tmp.wip

if($#argv == 2) then

echo quit >> $tmp.wip

endif

wip -d $dev $tmp.wip >& /dev/null

rm $tmp.wip

set count = 1

breaksw

endsw

end

if (-e $tmp.wip) then

echo vsize 1.5 10 1.5 7 >> $tmp.wip

echo expand 1 >> $tmp.wip

echo mtext T 2.0 0.5 0.5 Chile Phase Stability Tests for $date >> $tmp.wip

if($#argv == 2) then

echo quit >> $tmp.wip

endif

wip -d $dev $tmp.wip >& /dev/null

endif

rm $tmp.*

cd ..

S wndplot.csh

#!/bin/csh

167

if(($#argv > 2)||($#argv == 0)) then

echo ``Usage: wndplot.csh yymmdd <device>''

exit(1)

endif

if($#argv == 1) then

set dev = ``/ps -x''

endif

if($#argv == 2) then

set dev = $argv[2]

endif

set date = $argv[1]

set yymm = `echo $date | awk '{printf(``%s'',substr($1,1,4))}'`

set tmp = tmp$$

set count = 1

foreach f (archive/$yymm/$date*.wnd)

set fl = $f:t

set base = `echo $fl | awk '{printf(``%s\n'',substr($1,1,8))}'`

if (-e archive/$yymm/$base.out) then

set line1 = `head -1 archive/$yymm/$base.out`

if ($line1[1] == Calibration) then

set endtime = `head -2 archive/$yymm/$base.out | tail -1`

else

set endtime = `head -1 archive/$yymm/$base.out`

endif

else

set endtime = ``??:??''

endif

awk '{printf(``%d\t%f\t%f\n'',NR,$1,$2)}' $f > $tmp.$fl

switch ($count)

case 1:

echo paper 11 0.77 > $tmp.wip

echo font 2 >> $tmp.wip

echo expand 0.5 >> $tmp.wip

echo vsize 1.5 4 5.5 7 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

168

echo xcol 1 >> $tmp.wip

echo ycol 2 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo symbol 17 >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

set count = 2

breaksw

case 2:

echo vsize 4.5 7 5.5 7 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 2 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo symbol 17 >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

set count = 3

breaksw

case 3:

echo vsize 7.5 10 5.5 7 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 2 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo symbol 17 >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

set count = 4

breaksw

case 4:

echo vsize 1.5 4 3.5 5 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

169

echo xcol 1 >> $tmp.wip

echo ycol 2 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo symbol 17 >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

set count = 5

breaksw

case 5:

echo vsize 4.5 7 3.5 5 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 2 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo symbol 17 >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

set count = 6

breaksw

case 6:

echo vsize 7.5 10 3.5 5 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 2 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo symbol 17 >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

set count = 7

breaksw

case 7:

echo vsize 1.5 4 1.5 3 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

170

echo xcol 1 >> $tmp.wip

echo ycol 2 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo symbol 17 >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

set count = 8

breaksw

case 8:

echo vsize 4.5 7 1.5 3 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 2 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo symbol 17 >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

set count = 9

breaksw

case 9:

echo vsize 7.5 10 1.5 3 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 2 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo symbol 17 >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

echo vsize 1.5 10 1.5 7 >> $tmp.wip

echo expand 1 >> $tmp.wip

echo mtext T 2.0 0.5 0.5 Chile Wind Speed Data for $date >> $tmp.wip

if($#argv == 2) then

echo quit >> $tmp.wip

171

endif

wip -d $dev $tmp.wip >& /dev/null

rm $tmp.wip

set count = 1

breaksw

endsw

end

if (-e $tmp.wip) then

echo vsize 1.5 10 1.5 7 >> $tmp.wip

echo expand 1 >> $tmp.wip

echo mtext T 2.0 0.5 0.5 Chile Wind Speed Data for $date >> $tmp.wip

if($#argv == 2) then

echo quit >> $tmp.wip

endif

wip -d $dev $tmp.wip >& /dev/null

endif

rm $tmp.*

cd ..

T wdrplot.csh

#!/bin/csh

if(($#argv > 2)||($#argv == 0)) then

echo ``Usage: wdrplot.csh yymmdd <device>''

exit(1)

endif

if($#argv == 1) then

set dev = ``/ps -x''

endif

if($#argv == 2) then

set dev = $argv[2]

endif

set date = $argv[1]

set yymm = `echo $date | awk '{printf(``%s'',substr($1,1,4))}'`

set tmp = tmp$$

172

set count = 1

foreach f (archive/$yymm/$date*.wnd)

set fl = $f:t

set base = `echo $fl | awk '{printf(``%s\n'',substr($1,1,8))}'`

if (-e archive/$yymm/$base.out) then

set line1 = `head -1 archive/$yymm/$base.out`

if ($line1[1] == Calibration) then

set endtime = `head -2 archive/$yymm/$base.out | tail -1`

else

set endtime = `head -1 archive/$yymm/$base.out`

endif

else

set endtime = ``??:??''

endif

awk '{printf(``%d\t%f\t%f\n'',NR,$1,$2)}' $f > $tmp.$fl

switch ($count)

case 1:

echo paper 11 0.77 > $tmp.wip

echo font 2 >> $tmp.wip

echo expand 0.5 >> $tmp.wip

echo vsize 1.5 4 5.5 7 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 3 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo symbol 17 >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

set count = 2

breaksw

case 2:

echo vsize 4.5 7 5.5 7 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 3 >> $tmp.wip

echo limits >> $tmp.wip

173

echo box BCNST BCNST >> $tmp.wip

echo symbol 17 >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

set count = 3

breaksw

case 3:

echo vsize 7.5 10 5.5 7 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 3 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo symbol 17 >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

set count = 4

breaksw

case 4:

echo vsize 1.5 4 3.5 5 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 3 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo symbol 17 >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

set count = 5

breaksw

case 5:

echo vsize 4.5 7 3.5 5 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 3 >> $tmp.wip

echo limits >> $tmp.wip

174

echo box BCNST BCNST >> $tmp.wip

echo symbol 17 >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

set count = 6

breaksw

case 6:

echo vsize 7.5 10 3.5 5 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 3 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo symbol 17 >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

set count = 7

breaksw

case 7:

echo vsize 1.5 4 1.5 3 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 3 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo symbol 17 >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

set count = 8

breaksw

case 8:

echo vsize 4.5 7 1.5 3 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 3 >> $tmp.wip

echo limits >> $tmp.wip

175

echo box BCNST BCNST >> $tmp.wip

echo symbol 17 >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

set count = 9

breaksw

case 9:

echo vsize 7.5 10 1.5 3 >> $tmp.wip

echo data $tmp.$fl >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 3 >> $tmp.wip

echo limits >> $tmp.wip

echo box BCNST BCNST >> $tmp.wip

echo symbol 17 >> $tmp.wip

echo points >> $tmp.wip

echo limits 0 1 0 1 >> $tmp.wip

echo mtext T 0.5 0.95 1.0 $endtime >> $tmp.wip

echo vsize 1.5 10 1.5 7 >> $tmp.wip

echo expand 1 >> $tmp.wip

echo mtext T 2.0 0.5 0.5 Chile Wind Direction Data for $date >> $tmp.wip

if($#argv == 2) then

echo quit >> $tmp.wip

endif

wip -d $dev $tmp.wip >& /dev/null

rm $tmp.wip

set count = 1

breaksw

endsw

end

if (-e $tmp.wip) then

echo vsize 1.5 10 1.5 7 >> $tmp.wip

echo expand 1 >> $tmp.wip

echo mtext T 2.0 0.5 0.5 Chile Wind Direction Data for $date >> $tmp.wip

if($#argv == 2) then

echo quit >> $tmp.wip

endif

wip -d $dev $tmp.wip >& /dev/null

endif

176

rm $tmp.*

cd ..

U hist.csh

#!/bin/csh

if($#argv != 10) then

echo Usage: hist.csh dbase col xmin xmax hbins cdfflag upflag xlabel title outfile

exit(1)

endif

set dbase = $argv[1]

set col = $argv[2]

set xmin = $argv[3]

set xmax = $argv[4]

set hbins = $argv[5]

set cdfflag = $argv[6]

set upflag = $argv[7]

set xlabel = ``$argv[8]''

set title = ``$argv[9]''

set outfile = $argv[10]

set ymin = 0

set tmp = tmp$$

set ymax = `peak $dbase $col $hbins $xmin $xmax | awk '{print $2*1.1}'`

echo data $dbase > $tmp.wip

echo font 2 >> $tmp.wip

echo limits $xmin $xmax $ymin $ymax >> $tmp.wip

echo xcol $col >> $tmp.wip

echo expand 0.75 >> $tmp.wip

echo vsize 1 7 5.5 9 >> $tmp.wip

echo box BCNST,BCNST >> $tmp.wip

echo histogram $xmin $xmax $hbins >> $tmp.wip

echo xlabel $xlabel >> $tmp.wip

echo ylabel Counts >> $tmp.wip

echo expand 1 >> $tmp.wip

177

echo mtext T 2.0 0.5 0.5 $title >> $tmp.wip

if($upflag) then

set up = `tipper_uptime $dbase $col -999 | awk '{print $2}'`

echo expand 0.75 >> $tmp.wip

echo mtext T 1.5 0.5 0.5 The instrument was running $up% of the time >> $tmp.wip

echo expand 1 >> $tmp.wip

endif

echo id >> $tmp.wip

if($cdfflag) then

set line = `cdf $dbase $col 2000 $xmin $xmax $tmp.1 -999`

echo data $tmp.1 >> $tmp.wip

echo expand 0.75 >> $tmp.wip

echo vsize 1 7 1 4.5 >> $tmp.wip

echo xcol 1 >> $tmp.wip

echo ycol 2 >> $tmp.wip

echo limits $xmin $xmax 0 1.1 >> $tmp.wip

echo box BCNST,BCNST >> $tmp.wip

echo connect >> $tmp.wip

echo xlabel $xlabel >> $tmp.wip

echo ylabel Cumulative Distribution Function >> $tmp.wip

echo limits 0 10 0 10 >> $tmp.wip

echo move 8 1 >> $tmp.wip

echo label 25% ... $line[2] >> $tmp.wip

echo move 8 2 >> $tmp.wip

echo label 50% ... $line[3] >> $tmp.wip

echo move 8 3 >> $tmp.wip

echo label 75% ... $line[4] >> $tmp.wip

echo move 8 4 >> $tmp.wip

echo label Quartiles >> $tmp.wip

endif

echo quit >> $tmp.wip

wip -d $outfile/vps $tmp.wip

rm $tmp.*

V time.csh

#!/bin/csh

178

if(($#argv != 9)&&($#argv != 7)) then

echo ``Usage: time.csh dbase xcol ycol [ymin ymax] xlabel ylabel title outfile''

exit(1)

endif

if($#argv == 7) then

set dbase = $argv[1]

set xcol = $argv[2]

set ycol = $argv[3]

set ymin = auto

set ymax = auto

set xlabel = ``$argv[6]''

set ylabel = ``$argv[7]''

set title = ``$argv[8]''

set outfile = $argv[9]

endif

if($#argv == 9) then

set dbase = $argv[1]

set xcol = $argv[2]

set ycol = $argv[3]

set ymin = $argv[4]

set ymax = $argv[5]

set xlabel = ``$argv[6]''

set ylabel = ``$argv[7]''

set title = ``$argv[8]''

set outfile = $argv[9]

endif

set tmp = tmp$$

echo data $dbase > $tmp.wip

echo font 2 >> $tmp.wip

echo xcol $xcol >> $tmp.wip

echo ycol $ycol >> $tmp.wip

if(ymin == auto) then

echo limits >> $tmp.wip

else

179

echo limits 0 31 $ymin $ymax >> $tmp.wip

endif

echo box BCNST,BCNST >> $tmp.wip

echo symbol 1 >> $tmp.wip

echo points >> $tmp.wip

echo xlabel $xlabel >> $tmp.wip

echo ylabel $ylabel >> $tmp.wip

echo mtext T 2.0 0.5 0.5 $title >> $tmp.wip

echo id >> $tmp.wip

echo quit >> $tmp.wip

wip -d $outfile/ps $tmp.wip

rm $tmp.*

W Cdb.csh

#!/bin/csh -f

set tmp = tmp$$

if(-e Makefile) grep -v ``all:'' Makefile | grep -v ``dbcat.csh'' >

$tmp.1

set months = `archive_dates.perl archive`

echo $months

foreach yymm ($months)

set n = `grep $yymm $tmp.1 | wc -l`

if($n < 1) then

echo ``# $yymm'' >> $tmp.1

echo $yymm | awk

'{printf(``database/Merged.%s.C:\tarchive/%s/%s*.dat archive

/%s/%s*.wea\n\tmonth.csh %s\n'',$1,$1,$1,$1,$1,$1)}' >> $tmp.1

echo $yymm | awk '{printf(``\tsummary.csh %s\n\n'',$1)}' >> $tmp.1

endif

end

echo -n ``all: `` >> $tmp.1

180

foreach yymm ($months)

echo -n ``database/Merged.$yymm.C `` >> $tmp.1

end

echo ``'' >> $tmp.1

echo 1 | awk '{printf(``\tdbcat.csh\n'')}' >> $tmp.1

mv $tmp.1 Makefile

make all

X tipper.csh

#!/bin/csh

#

This script goes and finds all of the plots which need to be added to the

site testing page and copies them to the appropriate directories. It should

be run before mksites.csh.

#

SMF 10/1/95

#

echo ``Do not run this script unless you meet one or more of the following''

echo ``criteria:''

echo ``''

echo `` A. You are Scott Foster.''

echo `` B. You are acting under Scott Foster's instructions.''

echo `` C. You are really sure you know what you are doing and are willing to''

echo `` risk Scott Foster's wrath.''

echo ``''

echo -n ``Continue (y/n)? ``

set flag = $<

if (($flag != 'y')&&($flag != 'Y')) exit(0)

set Cdir = $work/tipper/Chile/figures

set MKdir = $work/tipper/MaunaKea/figures

set gifdir = /home/heineken/ftp/observerinfo/mma/sites

set ftpdir = /home/heineken/ftp/mma/sites

181

set tmp = tmp$$

set maxdate = `date -u +%y%m`

#

Add Opacity Histograms

#

set months = `ls $Cdir/opacity.*.C.gif | awk '{printf(``%s\n'',substr($1,index($1,``.

foreach yymm ($months)

if($yymm == $maxdate) break

cp $Cdir/opacity.$yymm.C.gif $gifdir

cp $Cdir/opacity.$yymm.C.ps $ftpdir/Chile

end

set months = `ls $MKdir/opacity.*.MK.gif | awk '{printf(``%s\n'',substr($1,index($1,'

foreach yymm ($months)

if($yymm == $maxdate) break

cp $MKdir/opacity.$yymm.MK.gif $gifdir

cp $MKdir/opacity.$yymm.MK.ps $ftpdir/MaunaKea

end

#

Add Temperature Histograms

#

set months = `ls $Cdir/temperature.*.C.gif | awk '{printf(``%s\n'',substr($1,index($1

foreach yymm ($months)

if($yymm == $maxdate) break

cp $Cdir/temperature.$yymm.C.gif $gifdir

cp $Cdir/temperature.$yymm.C.ps $ftpdir/Chile

end

set months = `ls $MKdir/temperature.*.MK.gif | awk '{printf(``%s\n'',substr($1,index(

foreach yymm ($months)

if($yymm == $maxdate) break

cp $MKdir/temperature.$yymm.MK.gif $gifdir

cp $MKdir/temperature.$yymm.MK.ps $ftpdir/MaunaKea

end

#

Add Wind Speed Histograms

#

set months = `ls $Cdir/wind_speed.*.C.gif | awk '{printf(``%s\n'',substr($1,index($1,

foreach yymm ($months)

182

if($yymm == $maxdate) break

cp $Cdir/wind_speed.$yymm.C.gif $gifdir

cp $Cdir/wind_speed.$yymm.C.ps $ftpdir/Chile

end

set months = `ls $MKdir/wind_speed.*.MK.gif | awk '{printf(``%s\n'',substr($1,index($

foreach yymm ($months)

if($yymm == $maxdate) break

cp $MKdir/wind_speed.$yymm.MK.gif $gifdir

cp $MKdir/wind_speed.$yymm.MK.ps $ftpdir/MaunaKea

end

#

Add Wind Direction Histograms

#

set months = `ls $Cdir/wind_direction.*.C.gif | awk '{printf(``%s\n'',substr($1,index

foreach yymm ($months)

if($yymm == $maxdate) break

cp $Cdir/wind_direction.$yymm.C.gif $gifdir

cp $Cdir/wind_direction.$yymm.C.ps $ftpdir/Chile

end

set months = `ls $MKdir/wind_direction.*.MK.gif | awk '{printf(``%s\n'',substr($1,ind

foreach yymm ($months)

if($yymm == $maxdate) break

cp $MKdir/wind_direction.$yymm.MK.gif $gifdir

cp $MKdir/wind_direction.$yymm.MK.ps $ftpdir/MaunaKea

end

#

Add Dew Point Histograms

#

set months = `ls $MKdir/dew_point.*.MK.gif | awk '{printf(``%s\n'',substr($1,index($1

foreach yymm ($months)

if($yymm == $maxdate) break

cp $MKdir/dew_point.$yymm.MK.gif $gifdir

cp $MKdir/dew_point.$yymm.MK.ps $ftpdir/MaunaKea

end

#

Add Pressure Histograms

#

set months = `ls $MKdir/pressure.*.MK.gif | awk '{printf(``%s\n'',substr($1,index($1,

foreach yymm ($months)

183

if($yymm == $maxdate) break

cp $MKdir/pressure.$yymm.MK.gif $gifdir

cp $MKdir/pressure.$yymm.MK.ps $ftpdir/MaunaKea

end

Y mksites.csh

#!/bin/csh -f

#

This script updates the site testing web page.

It should be run each time data is added.

#

Scott Foster 9/18/95

#

set gifdir = /home/heineken/ftp/observerinfo/mma/sites

set gifurl = http://www.tuc.nrao.edu/mma/sites

set ftpdir = ftp://ftp.tuc.nrao.edu/mma/sites

set tmp = tmp$$

cat sites.1 > $tmp.html

#

Add Chile Opacity Histograms

#

echo ``Monthly Opacity Distributions for: `` >> $tmp.html

set months = `ls $gifdir/opacity.*.C.gif | awk '{printf(``%s\n'',substr($1,index($1,'

set flag = 1

foreach yymm ($months)

set mlabel = `echo $yymm | awk '{printf(``%s %s'',substr($1,1,2),substr($1,3,2))}'

if($flag) then

set flag = 0

else

echo -n ``, `` >> $tmp.html

endif

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/opacity.$yymm.C.html''\"'

echo -n ``<TITLE>Chile Opacity Data for $mlabel</TITLE>'' > opacity.$yymm.C.html

184

echo ``<P ALIGN=CENTER>'' >> opacity.$yymm.C.html

echo ``'' >> opacity.$yymm.C.html

echo ``<P ALIGN=CENTER>'' >> opacity.$yymm.C.html

set prev = `echo $yymm | awk -f prev.awk`

if(-e $gifdir/opacity.$prev.C.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/opacity.$prev.C.html''\

endif

set next = `echo $yymm | awk -f next.awk`

if(-e $gifdir/opacity.$next.C.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/opacity.$next.C.html''\

endif

if(-e $gifdir/phase.$yymm.C.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/phase.$yymm.C.html''\"'

endif

echo -n ``Site Tes

echo ``FTP Directory'' >> opacity.$yymm.C.html

echo ``<ADDRESS>'' >> opacity.$yymm.C.html

echo ``sfoster@nrao.edu'' >> opaci

echo ``</ADDRESS>'' >> opacity.$yymm.C.html

end

#

Add Chile Phase Histograms

#

echo ``Monthly Phase Stability Distributions for: `` >> $tmp.html

set months = `ls $gifdir/phase.*.C.gif | awk '{printf(``%s\n'',substr($1,index($1,''.

set flag = 1

foreach yymm ($months)

set mlabel = `echo $yymm | awk '{printf(``%s %s'',substr($1,1,2),substr($1,3,2))}'

if($flag) then

set flag = 0

else

echo -n ``, `` >> $tmp.html

endif

echo -n ``

echo -n ``<TITLE>Chile Phase Stability Data for $mlabel</TITLE>'' > phase.$yymm.C.h

echo ``<P ALIGN=CENTER>'' >> phase.$yymm.C.html

echo ``'' >> phase.$yymm.C.html

echo ``<P ALIGN=CENTER>'' >> phase.$yymm.C.html

185

set prev = `echo $yymm | awk -f prev.awk`

if(-e $gifdir/phase.$prev.C.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/phase.$prev.C.html''\"'

endif

set next = `echo $yymm | awk -f next.awk`

if(-e $gifdir/phase.$next.C.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/phase.$next.C.html''\"'

endif

if(-e $gifdir/temperature.$yymm.C.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/temperature.$yymm.C.htm

endif

echo -n ``Site Tes

echo ``FTP Directory'' >> phase.$yymm.C.html

echo ``<ADDRESS>'' >> phase.$yymm.C.html

echo ``sfoster@nrao.edu'' >> phase

echo ``</ADDRESS>'' >> phase.$yymm.C.html

end

#

Add Chile Temperature Histograms

#

echo ``Monthly Temperature Distributions for: `` >> $tmp.html

set months = `ls $gifdir/temperature.*.C.gif | awk '{printf(``%s\n'',substr($1,index(

set flag = 1

foreach yymm ($months)

set mlabel = `echo $yymm | awk '{printf(``%s %s'',substr($1,1,2),substr($1,3,2))}'

if($flag) then

set flag = 0

else

echo -n ``, `` >> $tmp.html

endif

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/temperature.$yymm.C.html'

echo -n ``<TITLE>Chile Temperature Data for $mlabel</TITLE>'' > temperature.$yymm.C

echo ``<P ALIGN=CENTER>'' >> temperature.$yymm.C.html

echo ``'' >> temperature.$yymm

echo ``<P ALIGN=CENTER>'' >> temperature.$yymm.C.html

set prev = `echo $yymm | awk -f prev.awk`

if(-e $gifdir/temperature.$prev.C.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/temperature.$prev.C.htm

186

endif

set next = `echo $yymm | awk -f next.awk`

if(-e $gifdir/temperature.$next.C.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/temperature.$next.C.htm

endif

if(-e $gifdir/wind_speed.$yymm.C.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/wind_speed.$yymm.C.html

endif

echo -n ``Site Tes

echo ``FTP Directory'' >> temperature.$yymm.C.html

echo ``<ADDRESS>'' >> temperature.$yymm.C.html

echo ``sfoster@nrao.edu'' >> tempe

echo ``</ADDRESS>'' >> temperature.$yymm.C.html

end

#

Add Chile Wind Speed Histograms

#

echo ``Monthly Wind_Speed Distributions for: `` >> $tmp.html

set months = `ls $gifdir/wind_speed.*.C.gif | awk '{printf(``%s\n'',substr($1,index($

set flag = 1

foreach yymm ($months)

set mlabel = `echo $yymm | awk '{printf(``%s %s'',substr($1,1,2),substr($1,3,2))}'

if($flag) then

set flag = 0

else

echo -n ``, `` >> $tmp.html

endif

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/wind_speed.$yymm.C.html''

echo -n ``<TITLE>Chile Wind Speed Data for $mlabel</TITLE>'' > wind_speed.$yymm.C.h

echo ``<P ALIGN=CENTER>'' >> wind_speed.$yymm.C.html

echo ``'' >> wind_speed.$yymm.C

echo ``<P ALIGN=CENTER>'' >> wind_speed.$yymm.C.html

set prev = `echo $yymm | awk -f prev.awk`

if(-e $gifdir/wind_speed.$prev.C.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/wind_speed.$prev.C.html

endif

set next = `echo $yymm | awk -f next.awk`

if(-e $gifdir/wind_speed.$next.C.gif) then

187

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/wind_speed.$next.C.html

endif

if(-e $gifdir/wind_direction.$yymm.C.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/wind_direction.$yymm.C.

C.html

endif

echo -n ``Site Tes

echo ``FTP Directory'' >> wind_speed.$yymm.C.html

echo ``<ADDRESS>'' >> wind_speed.$yymm.C.html

echo ``sfoster@nrao.edu'' >> wind_

echo ``</ADDRESS>'' >> wind_speed.$yymm.C.html

end

#

Add Chile Wind_Direction Histograms

#

echo ``Monthly Wind Direction Distributions for: `` >> $tmp.html

set months = `ls $gifdir/wind_direction.*.C.gif | awk '{printf(``%s\n'',substr($1,ind

set flag = 1

foreach yymm ($months)

set mlabel = `echo $yymm | awk '{printf(``%s %s'',substr($1,1,2),substr($1,3,2))}'

if($flag) then

set flag = 0

else

echo -n ``, `` >> $tmp.html

endif

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/wind_direction.$yymm.C.ht

echo -n ``<TITLE>Chile Wind Direction Data for $mlabel</TITLE>'' > wind_direction.$

echo ``<P ALIGN=CENTER>'' >> wind_direction.$yymm.C.html

echo ``'' >> wind_direction

echo ``<P ALIGN=CENTER>'' >> wind_direction.$yymm.C.html

set prev = `echo $yymm | awk -f prev.awk`

if(-e $gifdir/wind_direction.$prev.C.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/wind_direction.$prev.C.

html

endif

set next = `echo $yymm | awk -f next.awk`

if(-e $gifdir/wind_direction.$next.C.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/wind_direction.$next.C.

188

endif

if(-e $gifdir/opacity.$yymm.C.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/opacity.$yymm.C.html''\

endif

echo -n ``Site Tes

echo ``FTP Directory'' >> wind_direction.$yymm.C.h

echo ``<ADDRESS>'' >> wind_direction.$yymm.C.html

echo ``sfoster@nrao.edu'' >> wind_

echo ``</ADDRESS>'' >> wind_direction.$yymm.C.html

end

cat sites.2 >> $tmp.html

#

Add Mauna Kea Opacity Histograms

#

echo ``Monthly Opacity Distributions for: `` >> $tmp.html

set months = `ls $gifdir/opacity.*.MK.gif | awk '{printf(``%s\n'',substr($1,index($1,

set flag = 1

foreach yymm ($months)

set mlabel = `echo $yymm | awk '{printf(``%s %s'',substr($1,1,2),substr($1,3,2))}'

if($flag) then

set flag = 0

else

echo -n ``, `` >> $tmp.html

endif

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/opacity.$yymm.MK.html''\"

echo -n ``<TITLE>Mauna Kea Opacity Data for $mlabel</TITLE>'' > opacity.$yymm.MK.ht

echo ``<P ALIGN=CENTER>'' >> opacity.$yymm.MK.html

echo ``'' >> opacity.$yymm.MK.htm

echo ``<P ALIGN=CENTER>'' >> opacity.$yymm.MK.html

set prev = `echo $yymm | awk -f prev.awk`

if(-e $gifdir/opacity.$prev.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/opacity.$prev.MK.html''

endif

set next = `echo $yymm | awk -f next.awk`

if(-e $gifdir/opacity.$next.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/opacity.$next.MK.html''

endif

189

if(-e $gifdir/phase.$yymm.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/phase.$yymm.MK.html''\"

endif

echo -n ``Site Tes

echo ``FTP Directory'' >> opacity.$yymm.MK.html

echo ``<ADDRESS>'' >> opacity.$yymm.MK.html

echo ``sfoster@nrao.edu'' >> opaci

echo ``</ADDRESS>'' >> opacity.$yymm.MK.html

end

#

Add Mauna Kea Phase Stability Histograms

#

echo ``Monthly Phase Stability Distributions for: `` >> $tmp.html

set months = `ls $gifdir/phase.*.MK.gif | awk '{printf(``%s\n'',substr($1,index($1,''

set flag = 1

foreach yymm ($months)

set mlabel = `echo $yymm | awk '{printf(``%s %s'',substr($1,1,2),substr($1,3,2))}'

if($flag) then

set flag = 0

else

echo -n ``, `` >> $tmp.html

endif

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/phase.$yymm.MK.html''\"''

echo -n ``<TITLE>Mauna Kea Phase Stability Data for $mlabel</TITLE>'' > phase.$yymm

echo ``<P ALIGN=CENTER>'' >> phase.$yymm.MK.html

echo ``'' >> phase.$yymm.MK.html

echo ``<P ALIGN=CENTER>'' >> phase.$yymm.MK.html

set prev = `echo $yymm | awk -f prev.awk`

if(-e $gifdir/phase.$prev.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/phase.$prev.MK.html''\"

endif

set next = `echo $yymm | awk -f next.awk`

if(-e $gifdir/phase.$next.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/phase.$next.MK.html''\"

endif

if(-e $gifdir/temperature.$yymm.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/temperature.$yymm.MK.ht

endif

190

echo -n ``Site Tes

echo ``FTP Directory'' >> phase.$yymm.MK.html

echo ``<ADDRESS>'' >> phase.$yymm.MK.html

echo ``sfoster@nrao.edu'' >> phase

echo ``</ADDRESS>'' >> phase.$yymm.MK.html

end

#

Add Mauna Kea Temperature Histograms

#

echo ``Monthly Temperature Distributions for: `` >> $tmp.html

set months = `ls $gifdir/temperature.*.MK.gif | awk '{printf(``%s\n'',substr($1,index

set flag = 1

foreach yymm ($months)

set mlabel = `echo $yymm | awk '{printf(``%s %s'',substr($1,1,2),substr($1,3,2))}'

if($flag) then

set flag = 0

else

echo -n ``, `` >> $tmp.html

endif

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/temperature.$yymm.MK.html

echo -n ``<TITLE>Mauna Kea Temperature Data for $mlabel</TITLE>'' > temperature.$yy

echo ``<P ALIGN=CENTER>'' >> temperature.$yymm.MK.html

echo ``'' >> temperature.$yym

echo ``<P ALIGN=CENTER>'' >> temperature.$yymm.MK.html

set prev = `echo $yymm | awk -f prev.awk`

if(-e $gifdir/temperature.$prev.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/temperature.$prev.MK.ht

endif

set next = `echo $yymm | awk -f next.awk`

if(-e $gifdir/temperature.$next.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/temperature.$next.MK.ht

endif

if(-e $gifdir/dew_point.$yymm.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/dew_point.$yymm.MK.html

endif

echo -n ``Site Tes

echo ``FTP Directory'' >> temperature.$yymm.MK.htm

echo ``<ADDRESS>'' >> temperature.$yymm.MK.html

191

echo ``sfoster@nrao.edu'' >> tempe

echo ``</ADDRESS>'' >> temperature.$yymm.MK.html

end

#

Add Mauna Kea Dew Point Histograms

#

echo ``Monthly Dew Point Distributions for: `` >> $tmp.html

set months = `ls $gifdir/dew_point.*.MK.gif | awk '{printf(``%s\n'',substr($1,index($

set flag = 1

foreach yymm ($months)

set mlabel = `echo $yymm | awk '{printf(``%s %s'',substr($1,1,2),substr($1,3,2))}'

if($flag) then

set flag = 0

else

echo -n ``, `` >> $tmp.html

endif

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/dew_point.$yymm.MK.html''

echo -n ``<TITLE>Mauna Kea Dew Point Data for $mlabel</TITLE>'' > dew_point.$yymm.M

echo ``<P ALIGN=CENTER>'' >> dew_point.$yymm.MK.html

echo ``'' >> dew_point.$yymm.MK

echo ``<P ALIGN=CENTER>'' >> dew_point.$yymm.MK.html

set prev = `echo $yymm | awk -f prev.awk`

if(-e $gifdir/dew_point.$prev.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/dew_point.$prev.MK.html

endif

set next = `echo $yymm | awk -f next.awk`

if(-e $gifdir/dew_point.$next.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/dew_point.$next.MK.html

endif

if(-e $gifdir/pressure.$yymm.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/pressure.$yymm.MK.html'

endif

echo -n ``Site Tes

echo ``FTP Directory'' >> dew_point.$yymm.MK.html

echo ``<ADDRESS>'' >> dew_point.$yymm.MK.html

echo ``sfoster@nrao.edu'' >> dew_p

echo ``</ADDRESS>'' >> dew_point.$yymm.MK.html

end

192

#

Add Mauna Kea Pressure Histograms

#

echo ``Monthly Pressure Distributions for: `` >> $tmp.html

set months = `ls $gifdir/pressure.*.MK.gif | awk '{printf(``%s\n'',substr($1,index($1

set flag = 1

foreach yymm ($months)

set mlabel = `echo $yymm | awk '{printf(``%s %s'',substr($1,1,2),substr($1,3,2))}'

if($flag) then

set flag = 0

else

echo -n ``, `` >> $tmp.html

endif

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/pressure.$yymm.MK.html''\

echo -n ``<TITLE>Mauna Kea Pressure Data for $mlabel</TITLE>'' > pressure.$yymm.MK.

echo ``<P ALIGN=CENTER>'' >> pressure.$yymm.MK.html

echo ``'' >> pressure.$yymm.MK.h

echo ``<P ALIGN=CENTER>'' >> pressure.$yymm.MK.html

set prev = `echo $yymm | awk -f prev.awk`

if(-e $gifdir/pressure.$prev.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/pressure.$prev.MK.html'

endif

set next = `echo $yymm | awk -f next.awk`

if(-e $gifdir/pressure.$next.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/pressure.$next.MK.html'

endif

if(-e $gifdir/wind_speed.$yymm.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/wind_speed.$yymm.MK.htm

endif

echo -n ``Site Tes

echo ``FTP Directory'' >> pressure.$yymm.MK.html

echo ``<ADDRESS>'' >> pressure.$yymm.MK.html

echo ``sfoster@nrao.edu'' >> press

echo ``</ADDRESS>'' >> pressure.$yymm.MK.html

end

#

Add Mauna Kea Wind Speed Histograms

193

#

echo ``Monthly Wind Speed Distributions for: `` >> $tmp.html

set months = `ls $gifdir/wind_speed.*.MK.gif | awk '{printf(``%s\n'',substr($1,index(

set flag = 1

foreach yymm ($months)

set mlabel = `echo $yymm | awk '{printf(``%s %s'',substr($1,1,2),substr($1,3,2))}'

if($flag) then

set flag = 0

else

echo -n ``, `` >> $tmp.html

endif

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/wind_speed.$yymm.MK.html'

echo -n ``<TITLE>Mauna Kea Wind Speed Data for $mlabel</TITLE>'' > wind_speed.$yymm

echo ``<P ALIGN=CENTER>'' >> wind_speed.$yymm.MK.html

echo ``'' >> wind_speed.$yymm.

echo ``<P ALIGN=CENTER>'' >> wind_speed.$yymm.MK.html

set prev = `echo $yymm | awk -f prev.awk`

if(-e $gifdir/wind_speed.$prev.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/wind_speed.$prev.MK.htm

endif

set next = `echo $yymm | awk -f next.awk`

if(-e $gifdir/wind_speed.$next.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/wind_speed.$next.MK.htm

endif

if(-e $gifdir/wind_direction.$yymm.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/wind_direction.$yymm.MK

.MK.html

endif

echo -n ``Site Tes

echo ``FTP Directory'' >> wind_speed.$yymm.MK.html

echo ``<ADDRESS>'' >> wind_speed.$yymm.MK.html

echo ``sfoster@nrao.edu'' >> wind_

echo ``</ADDRESS>'' >> wind_speed.$yymm.MK.html

end

#

Add Mauna Kea Wind Direction Histograms

#

echo ``Monthly Wind Direction Distributions for: `` >> $tmp.html

194

set months = `ls $gifdir/wind_direction.*.MK.gif | awk '{printf(``%s\n'',substr($1,in

`

set flag = 1

foreach yymm ($months)

set mlabel = `echo $yymm | awk '{printf(``%s %s'',substr($1,1,2),substr($1,3,2))}'

if($flag) then

set flag = 0

else

echo -n ``, `` >> $tmp.html

endif

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/wind_direction.$yymm.MK.h

echo -n ``<TITLE>Mauna Kea Wind Direction Data for $mlabel</TITLE>'' > wind_directi

echo ``<P ALIGN=CENTER>'' >> wind_direction.$yymm.MK.html

echo ``'' >> wind_directio

echo ``<P ALIGN=CENTER>'' >> wind_direction.$yymm.MK.html

set prev = `echo $yymm | awk -f prev.awk`

if(-e $gifdir/wind_direction.$prev.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/wind_direction.$prev.MK

K.html

endif

set next = `echo $yymm | awk -f next.awk`

if(-e $gifdir/wind_direction.$next.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/wind_direction.$next.MK

ml

endif

if(-e $gifdir/opacity.$yymm.MK.gif) then

echo -n ``<A HREF=''\"''http://www.tuc.nrao.edu/mma/sites/opacity.$yymm.MK.html''

endif

echo -n ``Site Tes

echo ``FTP Directory'' >> wind_direction.$yymm.MK.

echo ``<ADDRESS>'' >> wind_direction.$yymm.MK.html

echo ``sfoster@nrao.e

tml

echo ``</ADDRESS>'' >> wind_direction.$yymm.MK.html

end

cat sites.3 >> $tmp.html

mv $tmp.html sites.html

195

