
ALMA Memo 561

Delay Errors in Single- and Double-Sideband Interferometer Systems

A. R. Thompson (NRAO, Charlottesville), L. R. D’Addario (JPL, Pasadena),
D. T. Emerson (NRAO, Tucson), and P. J. Napier (NRAO, Socorro)

Sept. 20, 2006

Introduction
In many tracking interferometers and synthesis arrays the instrumental delays that are inserted to compensate
for the varying geometric delays are implemented digitally, and are variable only in finite increments. The
incremental nature of the delays results in phase errors that are periodic functions of time that can degrade the
signal-to-noise ratio, i.e. the sensitivity of the instrument. This memorandum is concerned with specification
of these minimum increments so that the degradation is no more than ∼ 1%, and includes consideration of
methods of mitigation that can reduce the effect of the phase errors. Systems like ALMA, with wide receiver
bandwidth and long baselines, require very fast digital hardware to provide small enough delay increments, so
careful choice of the relevant design parameters is necessary to provide optimum performance. Considerations
of single- and double-sideband (SSB and DSB) receiving systems are different in some important details.
The characteristics of SSB and DSB systems are discussed in detail in ALMA Memo. 304 (Thompson and
D’Addario 2000) for the case where delay errors are negligibly small. An earlier discussion of delay errors in
ALMA Memo. 255 (Thompson, 1999) was based on an IF of 0-2 GHz, which was subsequently changed to
2-4 GHz. Note that in this memorandum, DSB refers to systems in which the signals from both sidebands
are processed together throughout the system. Systems with DSB front ends in which the sidebands are
subsequently separated, or one sideband is suppressed, are regarded as special SSB cases.

Delay Errors
The difference between the propagation times in the wave paths to two antennas that track a source is
compensated by variable instrumental delays so that the overall delays of the signals at the correlator input
are closely equal. The small inequality in these delays is the delay error1∆τ . In most current interferometer
systems the instrumental compensating delays are implemented digitally, after the signals from the final
IF amplifiers have been digitized. Coarse delays that are multiples of the digital sampling interval are
implemented in a FIFO (first-in-first-out) memory, possibly using RAM (random access memory), and are
usually associated with the correlator. Fine delay increments are necessary to provide the required accuracy,
and are typically in the range of 1/4 to 1/32 of the Nyquist sample interval (i.e. 1/8 to 1/64 of the reciprocal
IF bandwidth). In ALMA these are implemented by stepping the phase of the clock pulses that control the
digital samplers2. The total delay, that is, the geometric (space propagation) delay plus the instrumental
delay for each antenna is compared with the geometric delay for an arbitrary reference position3. If the
geometric delay is increasing with time as the antennas track a source, then whenever the total delay for an
antenna falls below that of the reference by τ0/2, the compensating delay for the antenna is increased by
the minimum increment τ0. This causes the delay error to change sign from −τ0/2 to +τ0/2. Thus for any
antenna the delay error is a sawtooth function of time in which the error jumps from −τ0/2 to +τ0/2, then
falls approximately linearly to −τ0/2, and the pattern repeats. The probability distribution of the error is
uniform within a range ±τ0/2. For a pair of antennas it can usually be assumed that the times of delay
adjustment are unrelated (in general the rates of change of the geometric delay will be different for each
antenna), so the probability distribution of the difference in their delay errors is a triangular function with

1Here we are concerned with errors in the compensating delays and do not consider atmospheric effects, etc. in the geometric
delays.

2Other digital implementations of fine delay adjustment are possible but are not considered in this memo.
3The magnitude of the instrumental delays required is minimized by choosing for the reference the antenna that is reached

last by the approaching wavefront. This could be a significant consideration in systems using analog delays but is generally
unimportant with digital ones.
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extreme values of ±τ0, as in Fig. 1. The rms value of this delay error is:

[∫ τ0

0
p(∆τ )∆τ2d∆τ∫ τ0

0
p(∆τ )d∆τ

] 1
2

=
τ0√
6

, (1)

where p(∆τ ) is the expression for the probability distribution of ∆τ in Fig. 1.
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Figure 1: Probability distribution p(∆τ ) of the delay error ∆τ for a pair of antennas. τ0 is the minimum
increment of the instrumental compensating delay. The expression shown for p(∆τ ) applies to the part of
the probability function for which ∆τ ≥ 0.

Phase Errors and Degradation of Sensitivity
A delay error results in a phase error in a signal equal to 2π∆τν where, for analog delays, ν represents
frequency in the IF band in which the delays are inserted. For digital delays, ν is a frequency in the final
IF band, the signal from which is digitized4. (Note that in the remainder of this memorandum IF will refer
to the final IF band.) For an SSB system the main effect of a phase error is to cause a rotation of the
correlation vector as indicated in Fig. 2a, resulting in an error in the correlator output phase. There is also a
relatively small decrease in the amplitude, which results from the variation of the phase error with frequency
across the IF band, and is proportional to5 sinc(∆ν∆τ ) where ∆ν is the IF bandwidth. For a DSB system,
the delay error causes the components of the correlation vector resulting from the two sidebands to rotate
in opposite directions in the complex plane, as shown in Fig. 2b, where the line AB represents the phase
angle when the delay error is zero6 . The amplitude of the vector sum of the two components is proportional
to cos(2πν0∆τ ) where ν0 is the IF center frequency, but the phase of the correlation is not changed by a
variation in the instrumental delay. The instantaneous sensitivity loss (i.e. the loss for individual samples
before time averaging of the correlation) is greater than that for the SSB case. If we are considering delay

4In the case where the IF band extends from N∆ν to (N + 1)∆ν, where N is an integer, it is sometimes useful to regard
the digitized signal as representing the baseband response 0 to ∆ν, i.e. to regard the digitization as involving down conversion
to baseband with, for N odd, reversal of the spectrum. It might therefore appear that the phases introduced by digital-delay
errors should be calculated for frequency components in the 0 to ∆ν range. However, consider the fine delay steps. The delay
errors are no greater than the minimum increment and result from the fact that timing of the sampler pulses is not infinitely
adjustable. Thus the delay errors can be seen to result from offsets of the sampler pulses from the precisely desired capture
times of the waveform. A time shift t in the sample time is equivalent to time shift −t in the input waveform to the sampler,
so clearly the resulting phase errors correspond to the frequencies of the IF waveform at the input to the sampler.

5sinc(x) = sin(πx)/πx.
6To measure the phase of the cross correlation of both sidebands in combination it is necessary to insert a π/2 phase shift

into the IF signal of one antenna, or not to stop the fringes and fit a sine wave to the fringe function.

2



�
�

�
�

�
���

�

Im

Re

r

(a)
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�
�
��

				


				

�
�
�
�

�

�

Im

Rer�

ru

B

A

C
�

(b)

Figure 2: Representation in the complex plane of the output vector r of a correlator for one antenna pair with
(a) single-sideband and (b) double-sideband receiving system. Subscripts u and � indicate the two sideband
responses and the point C represents the sum of the upper- and lower-sideband outputs. The dotted arrows
indicate variation of the phase angle of the correlation vectors resulting from a phase error, and they reverse
when the delay error changes sign. The figure is from Thompson and D’Addario (2000), and the expressions
for the response of SSB and DSB systems on which it is based can be found, for example, in Thompson,
Moran, and Swenson (1986, 2001) and Woody (2003).

errors that are constant, or only vary slowly with time, the tolerance on the errors is more stringent in
the DSB case. Such errors were more important in early interferometers with analog delay systems using
coaxial cable or ultrasonic elements (see, e.g. Coe 1973), which could be temperature sensitive and difficult
to calibrate accurately. In digital systems the delays are controlled by a highly accurate master clock and
the only significant errors result from the incremental nature of the adjustment.

Now consider the effect of time averaging (integration) of the data at the correlator output. If the delay
error varies only by a small fraction during a single period of the averaging, then the relative sensitivity
is as considered above for the instantaneous effects. This may be the case for the shorter-baseline antenna
pairs. For delay errors that vary more rapidly the considerations are different. Consider a long-baseline
case in which the geometric delay is varying rapidly enough that the delay error changes sign several times
during the minimum averaging time at the correlator output. For an SSB system (Fig. 2a), the phase of
the correlation vector r will swing back and forth, following the difference of the sawtooth error patterns
for the two antennas. Components of the correlation that are normal to the vector time-average will cancel.
Thus the magnitude of the averaged correlation is proportional to the time average of the cosine of the
instantaneous vector phase relative to the average phase. Similarly, for a DSB system (Fig. 2b) the phase
angles of the vectors representing the two sideband responses move in opposite senses, following the delay
error variations. Components of the correlation vector normal to the direction AB cancel. The magnitude
of the correlation is proportional to the time-average of the cosine of the vector angles with respect to AB.
Clearly, with the rapidly varying delay error, the loss in sensitivity is effectively the same for the SSB and
DSB systems. Note, however, that in the SSB case the loss in sensitivity occurs in the averaging, whereas
in the DSB case the loss occurs immediately in the correlation process.

For large interferometer arrays the tolerance on the delay errors is set by the long baseline consideration,
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and is the same for both DSB and SSB cases. In ALMA the IF band extends from 2 to 4 GHz, i.e, from ∆ν
to 2∆ν . For the longest baselines the rate at which increments in the compensating delays are inserted is as
high as ∼ 200 times per second. Thus the relative sensitivity is given by the mean of the cosine of the phase
error. Since interferometers are usually designed so that the loss in sensitivity resulting from delay errors is
small, we can use the cosine approximation cos(φ) = 1 − 1

2φ2, so the relative loss is half the mean squared
phase error (in radians). For continuum observations the sensitivity is determined by the mean squared
value of the phase error 〈φ2〉 across the full bandwidth, which, noting that the values of ∆τ and ν under
consideration are independent of one another, is

〈φ2〉 =
(2π)2

∆ν

∫ νmax

νmin

∫ τ0

−τ0

p(∆τ )(ν∆τ )2dνd∆τ =
(2π)2

∆ν

∫ νmax

νmin

[∫ τ0

−τ0

p(∆τ )∆τ2d∆τ

]
ν2dν

= (2π)2〈∆τ2〉〈ν2〉, (2)

where p(∆τ ) is the probability distribution of the delay error for an antenna pair as in Fig. 1, νmax and νmin

are the upper and lower limits of the IF passband, and 〈 〉 indicates the mean value. For a baseband IF in
which the frequency response extends from 0 to ∆ν , 〈ν2〉 = ∆ν2/3, and for a frequency response from ∆ν
to 2∆ν , as in ALMA, 〈ν2〉 = 7∆ν2/3. From Eq. (1), 〈∆τ2〉 = τ2

0 /6. The corresponding values of relative
sensitivity loss are given in Table 1, which includes the IF band 0 to ∆ν for comparison.

0 − ∆ν ∆ν − 2∆ν

τ0 φrms SNR loss φrms SNR loss
1/(8∆ν) 10.6◦ 1.7% 28.1◦ 11.1%
1/(16∆ν) 5.30◦ 0.43% 14.03◦ 3.0%
1/(32∆ν) 2.65◦ 0.11% 7.02◦ 0.75%
1/(64∆ν) 1.33◦ 0.027% 3.51◦ 0.19%

Table 1. Values of the loss in signal-to-noise ratio (sensitivity) for IF responses extending from 0 to ∆ν
and ∆ν to 2∆ν . Results are shown for four values of the delay step τ0, which it is convenient to express
as a fraction of the reciprocal bandwidth. The rms value of the IF band is used, which is appropriate for
continuum observations.

0 − ∆ν ∆ν − 2∆ν
τ0 φrms SNR loss φrms SNR loss

1/(8∆ν) 18.4◦ 5.1% 36.7◦ 20.6%
1/(16∆ν) 9.19◦ 1.3% 18.4◦ 5.1%
1/(32∆ν) 4.59◦ 0.32% 9.19◦ 1.3%
1/(64∆ν) 2.30◦ 0.08% 4.59◦ 0.32%

Table 2. Values of the loss in signal-to-noise ratio as in Table 1, but using the upper edge of the IF band
instead of the rms of the intermediate frequency. This is appropriate for observations using a spectral line
(multichannel) correlator, and the values shown correspond to the highest frequency channel, i.e. the worst
case.

For spectral line observations the delay-induced phase errors are greatest for the highest frequency spectral
channel, for which we can take the frequency as closely equal to the upper edge of the IF response νmax.
The mean squared values of ∆τ are the same as in the continuum case, but for frequency ν we use the upper

4



edge of the IF band, i.e. ∆ν and 2∆ν for the two cases considered. The corresponding values of relative
sensitivity are given in Table 2.

Mitigation of delay Errors
Conceptually the most straightforward way of keeping the loss in sensitivity resulting from delay errors
within a tolerable limit7 (say, ∼ 1%) is to use a small enough value for the minimum delay increment. This
may not always be easy in systems with wide bandwidths which require correspondingly high sample rates
in the digitization. It is also possible to use a larger value for τ0 and apply corrections to reduce the phase
errors. Such corrections can be inserted either before digitization by adjusting the phase of a local oscillator,
or, under certain conditions, at the correlator output by adjusting the phase of the measured correlation.
A possible scheme (D’Addario 2003) is one in which whenever a delay increment is inserted or removed,
a phase jump of magnitude 2πν0τ0, and opposite sign to the delay-induced phase jump, is inserted in the
corresponding signal through a local oscillator8. Here ν0 is the IF center frequency, for which the phase
error is exactly canceled. The overall effect for the full bandwidth can be found by determining the value of
〈(ν − ν0)2〉, that is, the mean squared value of frequency measured with respect to the band center:

〈(ν − ν0)2〉 =
1

∆ν

∫ νmax

νmin

(ν − ν0)2dν =
∆ν2

12
. (3)

This result applies for both the 0 − ∆ν and ∆ν − 2∆ν IF bands. Comparison with ∆ν2/3 and 7∆ν2/3 for
the cases without mitigation shows that the loss in sensitivity is reduced by factors of 4 and 28, respectively.
In the case of a DSB system, the phase adjustments must be inserted on the second local oscillator (or a
later one) so that, like the delay-induced phase errors, they are applied with the same sign to each sideband
component within the IF. Since the phase changes resulting from the changes in the instrumental delay
provide a component of the frequency offset used to stop the interferometer fringes, it is also necessary to
replace this by inserting a smooth component in the form of a frequency offset, 2πν0 dτg/dt, where τg is the
geometric delay. The combination of the inserted phase jumps and the frequency offset provide a sawtooth
phase component that, at the band center, exactly cancels the phase sawtooth induced by the delay error.
For an SSB system the frequency offset can be combined with the usual fringe-stopping offset on the first
local oscillator, but for a DSB system it must be on the second (or a later) local oscillator.

Another possibility for reducing the effect of delay errors is to calculate the induced phase error in the
cross correlation of each pair of signals and correct the phase at the correlator output. The delay error for
each baseline, at any time, can be calculated accurately, since the timing with which delay increments are
inserted is highly precise and the interferometer baselines are accurately calibrated. Thus the computed
phase error, averaged over each correlator averaging period, can be used to correct the correlation phase.
For a spectral correlator, the correction can be applied to each channel in proportion to its center frequency.
Note, however, that the correlator output data are only available for correction at intervals determined by
the minimum averaging period that is built into the hardware or software. For short baselines the rate of
change of delay may be small enough that the resulting phase error varies by only a few degrees during an
averaging period. In such cases there will be very little loss in the magnitude of the measured correlation.
For longer baselines where several or many delay increments occur during an averaging period the phase
error will average down, but the magnitude of the correlation will suffer the loss indicated by the numbers
in columns 3 and 5 of Tables 1 and 2. D’Addario (2003) suggests that this correction be applied routinely to
all ALMA baselines. If it were possible to apply the phase correction to averaging periods short enough that
from one to the next the phase error never changed by more than a few degrees, then this would provide

7Various effects in an interferometer system limit the sensitivity. There are some large effects like aperture efficiency and
quantization efficiency, and more numerous smaller ones such as phase irregularities in frequency responses, local oscillator noise,
timing errors, delay errors, etc. The combined effect of the smaller losses can become serious, so for each one it is reasonable
to aim at a fairly stringent limit like the 1% figure suggested here.

8This method of mitigation of the delay errors was considered but not implemented during the early development of the
VLA. The original idea is attributed to B. G. Clark.
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another scheme for mitigation of delay errors. Note, however, that this would not work for a DSB system
unless sideband separation is used, since for DSB the sensitivity loss occurs in the correlation, not in the
averaging.

ALMA
In the early design of ALMA the minimum delay increment was 1/8 of the Nyquist sample interval (1/16∆ν),
resulting in a 3% sensitivity loss (Table 1), or 5.1% for the highest frequency channel (Table 2). These losses
are considered to be too high. Mitigation of the delay errors by removing the phase steps at the IF center
frequency could be used, but the control of the direct digital synthesizer (DDS) would need to be modified to
allow the introduction of the phase offsets at small enough time intervals. An alternative, which is preferred
(Napier 2006), is to enable a minimum delay increment of 1/16 of the Nyquist sample interval (1/32∆ν).
This solution requires less additional software than inserting phase steps in a local oscillator, but requires
modification of a restriction on the number of increments that can be inserted in a 48 ms interval. The
sensitivity loss for continuum observations then becomes 0.75% (Table 1), and for spectral line observations
is 1.3% for the highest frequency channel. For the lowest frequency channel it is 1.3%/4 = 0.33%9. Thus the
general guideline of 1% loss can reasonably be judged to have been met. Another detail of the ALMA design
is that coarse delay increments that are multiples of the sample interval can only be inserted or removed on
1 ms timing boundaries. This also applies to the finer delay steps, but it is proposed (Napier, 2006) that
the insertion of the coarse and fine steps be synchronized so that in the case where the stepping of the fine
delay resets and the coarse delay is adjusted by one sample interval, the timing of these two events will be
simultaneous (i.e. be applied to the same sample). If this synchronization is not achieved a delay error of
approximately one sample interval will result.
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