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I. Background

The system temperature Ts at the inputs of the ALMA front ends is expected to range from about 50
K (band 1, SSB) to about 1000 K (band 10, DSB), depending on frequency, atmospheric conditions, and
pointing elevation. Since the nominal signal level at each digitize is Po = 1 mW in bandwidth B = 2 GHz,
a net gain of kTsB/Po = 75.6 dB to 88.6 dB is required. Various losses will be incurred on the signal path,
including 9 dB of power division (in Downconverter), 5 to 20 dB in variable attenuator headroom, about
6 dB in padding (for matching), 7 dB in second mixer conversion loss, estimated 11 dB in insertion loss of
various components, and estimated 8 dB in cables and connectors. The required active gain is then 122 to
150 dB. Since most of the active gain is fixed and independent of band, and in order to allow for worst-case
component tolerances and the possibility of additional padding, the actual active gain will be larger than
150 dB.

In order to support total power radiometry, it has been suggested that the net gain must be very stable.
There is no actual specification on this. The ALMA Project Book [1] mentions only a 1% limit in connection
with calibration accuracy, but a limit on the fractional power gain fluctuation of δG/G = 1 × 10−4 has
been proposed in recent discussions. This follows from a desire that the sensitivity not be limited by the
instrumental gain fluctuations, but rather by thermal noise or by fluctuations in atmospheric emission. In
[2], it is argued that the most stringent requirement occurs for on-the-fly total power scanning with 8 GHz
bandwidth, and that for this case the 1 × 10−4 value applies at intervals of 1 sec in order that the gain
fluctuation noise not exceed the thermal noise. In [3], it is argued that this mode will incur errors due
to fluctuation of atmospheric emission of about .015 K at 230 GHz at the 50th percentile; this has the
same effect as δG/G = 1 × 10−4 if Ts = 150 K. Documents giving a formal requirement for ALMA are in
preparation [4][5].

At other time scales, different requirements may prevail. For beam-switched total power continuum
(using subreflector nutation), fractional gain stability as small as 1.3× 10−5 might be needed in order not to
limit sensitivity, but only for time intervals of .05 sec (assuming 10 Hz switching with 20% transition time).
For interferometry, the gain should be stable over a gain calibration cycle, which may be several seconds to
several minutes [4], but the fractional variation can be several×10−3 since the calibration error is unlikely
to be less than 1 × 10−2.

Fractional gain stability better than 1 × 10−3 is very difficult on any of these time scales, especially
since the large total gain must be implemented in many separate stages. With K identical stages having
independent gain fluctuations, each must have a fractional stability 1/

√
K times the total. In practice, the

stages are not at all identical, so some must be much better than this. Also, gain variations caused by the
environment are unlikely to be independent among stages; for identical but fully correlated fluctuations, the
fractional stability of each stage must be 1/K times the total.

In ALMA, the active components of the signal processing chain may be classified as follows.

• Cold RF amplifier (bands 1 and 2 only);
• SIS mixer (bands 3–9) or cold Schottky diode mixer (bands 1 and 2);
• Cold IF amplifier, 4–12 GHz;
• Room temperature IF amplifier(s), 4–12 GHz;
• Room temperature baseband amplifier(s), 2–4 GHz.

We will assume that passive components (filters, switches, power dividers, etc.) have negligible gain variation
on the time scales of interest, and we also neglect any gain variation of the second mixer. The different types
of active components each contribute differently to the gain variation, and different ones may be dominant
on different time scales. Furthermore, we distinguish two causes of gain variation for each device: “intrinsic”
fluctuations, caused by physical mechanisms internal to the device, such as charge density fluctuations in
semiconductors, which are truely random processes characterized by well behaved statistics and which are
independent from one device to another; and “extrinsic” fluctuations, caused by changes in the environment
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(primarily temperature, but possibly pressure and mechanical stress) or in auxillary signals like d.c. bias or
LO power. The causes of extrinsic fluctuations may be deterministic or even periodic, or their statistics may
be less well behaved.

II. Theory

Radiometer Output Noise

Consider the simplified model of a radiometer illustrated in Figure 1. The input n(t) is white gaussian
noise at constant noise temperature Ts, and it includes both the radiometer’s noise and any external signal
(“sky”) noise. This system observes an input band centered at f0 with effective bandwidth B, determined
by an ideal bandpass filter. We assume for simplicty that B << f0. The net voltage gain is g(t) = g0 +δg(t).
The detector is taken to be an ideal square-law device. It is followed by a low pass filter with bandwidth
> B that rejects only the RF components near 2f0. (To make a practical radiometer, an integrate-and-dump
filter should be added to the output of this model.)

Figure 1: Simple radiometer model.

Any simple radiometer, including but not limited to the model of Fig. 1, can be experimentally charac-
terized by measuring the power spectral density of the wideband (“video”) output of its square law detector.
In the absence of gain fluctuations, this spectrum should be nearly flat at (V0/B)2 for frequencies << B,
where V0 is the average value of the detector output. In practical measurements, e.g. [6], this is indeed
observed at high frequencies, but at low frequencies (typically below 5 to 1000 Hz) the spectral density often
increases in proportion to fα, where α ≈ −1. The excess spectral density is usually attributed to gain
fluctuations.

As shown in Appendix A, the relative power spectral density of the output voltage v(t) in the model of
Fig. 1 is given by

Sv(f)

V 2
0

= δ(f) +
1

B
+

2Sg(f)

G0

, |f | << B (1)

where V0 = 〈v(t)〉 is the average (d.c.) output, G0 = |g0|2 is the average power gain, and Sg(f) is the power
spectral density of δg(t), so that it is the Fourier transform of

Rg(τ) = 〈δg(t) δg(t − τ)〉. (2)

Therefore, if the gain fluctuations are such that Sg(f) = G1(f/f1)
α, then we expect the spectral density to

have the form that is often observed. These gain fluctuations are then described by parameters G1, f1, and
α, or alternatively by B, α, and “corner frequency” fc = f1(BG1)

−1/α, which is the frequency at which the
last two terms in (1) are equal. On the other hand, Sg(f) cannot maintain this power law form with α < 0
down to f = 0, because Rg(0) = 〈δg(t)2〉 would then be infinite.

At sufficiently low frequencies, gain fluctuations in most active devices are assumed to be dominated by
variations in the environment. At sufficiently high frequencies, the gain fluctuations are usually negligible
compared with the detector output fluctuations due to the noisy nature of the input (which is partly the
thermal noise of the radiometer itself). At other frequencies, experiments show that the fluctuations have a
negative power law spectrum. For some devices, especially HFET amplifiers, this is roughly consistent with
the effect of expected fluctuations in charge carrier density in the active regions of transistors, but a detailed
theory is currently lacking.
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Application to Radio Telescopes

A single radiometer measurement involves averaging the output voltage for integrating time Ti. All
astronomical measurements then consist of differences between such radiometer measurements, where a
reference observation is subtracted from a signal or “on source” observation. The signal-reference cycle is
usually repeated, and the differences are further averaged to achieve greater SNR. The period of the switching
cycle is 2T ≥ Tis + Tir, where Tis and Tir are the signal and reference integrating times, respectively. Thus,
the result of one astronomical measurement is

∆V =
1

Tis

∫ Tis

0

v(t) dt − 1

Tir

∫ T1+Tir

T1

v(t) dt. (3)

The measurement accuracy is characterized by the variance of ∆V , and this depends on the system noise
temperature, the bandwidth, the integrating times, and the gain fluctuations. Whereas the astronomical
signal that gives rise to ∆V is usually a small fraction of the input signal, the variance will be the same if
〈∆V 〉 = 0, so we calculate it for that case. Then

var∆V = 〈∆V 2〉 − 〈∆V 〉2 = 〈∆V 2〉 (4)

and taking for simplicity Tis = Tir = aT , a ≤ 1, and T1 = T , substituting (3) into (4) gives

var∆V = 2
1

a2t2

[

∫ at

0

∫ at

0

Rv(t − t′) dt dt′ −
∫ at

0

∫ T+at

T

Rv(t − t′) dt dt′

]

(5)

where Rv(τ) is the autocorrelation function of v(t) and hence the Fourier transform of Sv(f). Using the
latter fact and carrying out the time integrals produces

var∆V =
1

a2t2

∫ ∞

−∞

Sv(f)
(1 − cos 2πfT )(1− cos 2πfaT )

π2f2
df. (6)

One can now substitute Sv(f) from (1) and carry out the frequency integral to obtain the variances for cases
of interest.

var∆V is sometimes called the “Allan variance” of the radiometer output [7][8]. Indeed, var∆V/V 2
0 is

identical to the two-sample Allan variance σ2(2, T, aT ) [9] used to characterize the stability of oscillators if
v(t)/V0 is used in place of the fractional frequency variation f(t)/f0 of the oscillator. We can therefore use the
well-developed theory of oscillator stability to understand the relationships among measurable quantities. For
example, if Sv(f) = h−2/f2 for constant h−2, as is sometimes observed when gain fluctuations dominate, then
σ(2, T, T ) = (4π2/3)h−2|T | and this v(t) may be described as a random walk [10]. Actually, most data (see
section III below) show Sv(f) = hαfα with α ≈ −1. When α = −1, it is found that σ2(2, T, T ) = 4 ln 2 h−1

and the fluctuations are described as “flicker.” This is the statistical behavior that is called “1/f noise” in
the context of oscillator stability. Finally, when the spectral density is constant, Sv(f) = 1/B, as it is when
the thermal noise at the radiometer’s input is dominant [see (1)], it is found that σ2(2, T, T ) = 1/(BT ),
in agreement with the usual radiometer equation.1 These relationships are illustrated in Figure 2. (When
a < 1, which implies non-zero blanking time between signal and reference, the appropriate formulas are
given in [10].)

1 The formulas for σ2 given here are 2 times larger than those in [10] because that paper used single-sided
spectral densities while we have defined Sv(f) to be two-sided.
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Figure 2: Frequency domain (top) and time domain (bottom) representations of radiometer
output noise. Parameters have been choosen so that the dominant noise is from random-walk gain
fluctuations at low frequencies and long times, flicker gain fluctuations at intermediate frequencies
and times, and thermal noise at high frequencies and short times.

III. Experimental Data on Intrinsic Gain Fluctuations

In this section, available data on intrinsic gain fluctuations is reviewed, concentrating on devices relevant
to the ALMA signal processing chain, as identified in section I.

For SIS mixers, little is known about intrinsic gain fluctuations. There is some sparce data on the gain
stability of complete SIS receivers [7][11], and it is consistent with intrinsic gain variations of the cryogenically
cooled stages of IF amplification and with extrinsic causes of mixer gain variation (see section IV below).
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No available theory suggests a mechanism for intrinsic mixer gain fluctuations, but neither are they ruled
out.

For microwave amplifiers, including those at RF, IF and baseband, considerably more is known, but
our knowledge is far from complete. In HFET devices, known physical mechanisms are believed to cause
random fluctuations in the number of available charge carriers and in their mobility, leading to fluctuations
in gain that should have flicker statistics [14]. The gain variance should be inversely proportional to the
active area of the device (gate length times width) and to the drain current. There are some indications
that InP devices have larger gain fluctuations than GaAs devices [13]. Cooling to cryogenic temperatures
leads to larger gain fluctuations, although this is partly due to the use of lower drain current for lower
noise temperature. Wollack [14] reports maximum fluctuations at 150K in GaAs devices, but Wollack and
Pospieszalski [6] find a linear decrease with temperature from 60 to 300K in InP devices. In GaAs devices,
illumination with an LED at cryogenic temperatures causes increased fluctuations [14]. There also seems to
be considerable variation among devices that are nominally identical, especially if they are from different
wafers.

Note: In some cases, not all amplifier stages are identical. The table allows for N1 stages at
temperature T1 with area A1 (gate length×width), and N2 stages at T2 and A2. Measurements
were made at center frequency f0 and bandwidth B. Other column headings are defined in the
text.

Table 1 summarizes experimental data on HFET amplifiers from the literature. The data are taken
from five papers [6][11][13][14][25], and they include amplifiers with GaAs and InP transistors of several
sizes, center frequencies from 8 GHz to 82 GHz, and physical temperatures from 2.7 K to 300 K. In each
case, the measurements have been reduced to estimates of the parameters G1 and α for f1 = 1 Hz. Ignoring
one extreme outlier, the overall range of α is [−1.41,−0.7] and of G1 is [3.2×10−10, 2.4×10−7] Hz−1 (743:1).
After accounting for variations in the device areas, physical temperatures, and number of amplifier stages
in each measurement, the range of G1 is reduced to [5.4 × 10−10, 2.8 × 10−8] Hz−1 µm2 per stage at 300K
(51:1). This was done by scaling according to

G1,norm = G1[70K/(300K− T )]A/N, (7)
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where N is the number of stages, A is the device area, and T is the physical temperature. The temperature
factor is an empirical fit to the data in [6], measured for InP devices and perhaps not appropriate to all
materials. In some cases, the first amplifier stage was different from the others; then the scaling factor was
a sum of separate terms, each similar to (7), for each stage. No attempt was made to scale for biasing
differences, since that information is mostly not reported. Usually the bias of the first stage was set for
minimum noise temperature, with other stages biased at higher drain current.

There were differences among the methods used by different authors, perhaps accounting for some of the
variation in results. The measurements in [11] were for complete radiometers that included room temperature
stages; our analysis assumes that the cryogenic stages are dominant and makes no correction. In [14], it is
claimed that the reported results have been corrected for room temperature stages. In [6], ten stages of the
device under test were used, ensuring that its fluctuations dominate. These three papers all measured the
power spectrum Sv(f) of the detector output with broad-band noise at the radiometer’s input; they used
Sg(f) = G1(f/f1)

α in equation (1) and determined G1 and α by fitting to the measurements. In contrast,
[13] used a CW test signal at the input and observed the gain fluctuation spectrum more directly.

From the normalized results, it is possible to make these observations:
• There is no apparent dependence on center frequency, with the 8 GHz results for G1,norm covering about

the same range as the 82 GHz results. However, higher frequency amplifiers generally use transistors of
smaller area, and each stage has smaller gain; it is for these reasons that the fluctuations in a multi-stage
amplifier of a given total gain are higher at higher frequencies.

• There is no apparent dependence on device material, with the scaled results covering about the same
range for GaAs-based and InP-based devices.

• The empirical temperature scaling from [6] appears to work well, since there is no apparent temperature
dependence after scaling. There is much more scatter in the measurements at cryogenic temperatures
([5.4 × 10−10, 5.8 × 10−8] Hz−1 µm−2, or 51:1) than in those at room temperature ([2.3 × 10−9, 5.7 ×
10−9] Hz−1 µm−2, or 2.5:1). However, the room temperature data includes only a few amplifiers.

IV. Experimental Data on Extrinsic Gain Sensitivities

The gain of a typical heterodyne radiometer is subject to many influences from the environment and
from auxilliary signals, including
• temperature changes, especially for active components but also for some passive ones such as filters;
• mechanical stress changes, particularly for cables and other items of extended size, especially on antennas

where the relative direction of gravity is variable;
• variations in d.c. bias voltages or currents to active devices, including amplifiers and mixers;
• variations in local oscillator power supplied to mixers, especially SIS mixers and unsaturated resistive

mixers (resulting mainly from temperature and bias variations in the LO source); and
• possibly, variations in the magnetic field within SIS mixers (which is known to have a strong influence on

mixer noise temperature at high frequencies, but where the influence on gain appears to be unknown).

Clearly the situation is very complicated, making a comprehensive treatment difficult. Here we concentrate
on reviewing what is known experimentally about the sensitivity of gain to some of these factors. We will
ignore mechanical stress effects on the assumption that they can be made negligible by good structural
design.

The most detailed work to date on the stability of SIS receivers is reported in [7]. (The theory and
analysis in this paper are poorly developed, but it gives valuable experimental results.) Additional results
are given in [15] and [16]. New studies for ALMA are underway at SRON [17] with results expected in the
near future.

Data on the sensitivities of other components is very limited, but some is given in [16].
Some data on the stability of complete millimeter-wave receivers is given in [18] as Allan variance plots.

Measurements are reported for each of the two channels of the 100 GHz and 230 GHz receivers on the
IRAM 30 Meter Telescope. In most cases, var∆V (τ)/V 2

0 is dominated by flicker-type gain fluctuations for
τ > 0.1 sec and by random-walk fluctuations for τ > 30 sec. Typically var∆V (1 sec)/V 2

0 = 2 × 10−8, but
two receivers did much better, < 5 × 10−9, at a particular LO frequency. It is not known how much of the
variance is intrinsic and how much is extrinsic, nor how much is due to each of the many components in the
signal path.
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Temperature Coefficients

The results discussed here are summarized in Table 2.
Kooi [7] and Plambek [15] provide data on (1/G)dG/dT for an SIS mixer separately from its IF amplifier

and other components. Kooi used a single-junction 345 GHz mixer with fixed-voltage bias and varied the
temperature from 2 to 10 K. The temperature coefficient approaches zero at 2K and is maximum at 5K.
At 3.8K, he measures –0.1 K−1. Meanwhile Plambeck measures |(1/G)dG/dT | = .05 K−1 at 3.8K for a 100
GHz mixer. It is not known whether the difference is due to mixer construction or frequency. At 4.2K, a
more practical temperature in large and complex receivers, the coefficient is larger by at least a factor of 2.

For HFET amplifiers at cryogenic temperatures, Kooi measures .03 K−1 and Plambek measures .008 K−1

(signs not reported). Both of these used GaAs devices at 1–2 GHz. It is not known how much of this might
be due to bias circuit components. Probably both used constant-current bias.

Plambek [19] and Frey [16] provide data for various microwave and UHF components used in the receivers
at the BIMA array. These form a room temperature chain of amplifiers, filters, mixer, and detector starting
at 1.3–2.2 GHz with an estimated 60 dB of active gain. In this system, the dominant component is the square
law detector (type not reported), which accounts for 54% of the –.013 K−1 total temperature coefficient.
All components of the chain have negative temperature coefficients, so there is no cancellation. For the
amplifiers, 30% of the coefficient is due to the associated voltage regulator (–1 mV/K), and another 10% is
due to a ceramic circuit board. With all components mounted on a plate inside an enclosure, temperature
regulation of .02 K peak-to-peak in 24 hours and .01 K in 1 hour is achieved, limiting the gain variation to
1.3×10−4 per hour or, probably, 4×10−8 per second. All of these are laboratory results, and it is estimated
[19] that the performance on the telescope may be 10 times worse.

Other Influences

The sensitivities of amplifiers to bias voltages and currents and of resistive mixers to LO power are
reasonably well understood.

The gain of an SIS mixer is also sensitive to bias voltage and LO power, and so is its noise temperature.
Such mixers are normally adjusted for minimum noise temperature, and this frequently (but not always)
correspondends to a local maximum of the gain. In that case, the first-order sensitivities dG/dVb and dG/dPL

are zero, where Vb is the bias voltage and PL is the LO power. But adjustment to the optimum operating point
is not perfect, so second-order effects are important. To obtain a rough idea of the magnitude, let Popt, Vopt

be the optimum LO power and bias voltage, respectively, and assume that the gain goes quadratically to zero
at PL = Popt±Popt and at Vb = Vopt±hfLNj/2e, where h is Plank’s constant, fL is the LO frequency, Nj is
the number of series-connected SIS juntions, and e is the electronic charge. Thus, the relative LO sensitivity
is independent of frequency but the bias sensitivity gets smaller with frequency because the photon step
width hfLNj/e gets larger. Then

G − Gmax

Gmax

= −
(

Vb − Vopt

hfLNj/2e

)2

−
(

PL − Popt

Popt

)2

, (8)

so an LO power error of 10% or a bias error of 5% of the photon step leads to a gain change of –1%.
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V. Application To ALMA

It is expected that total power radiometry will produce the most stringent requirements for gain stability.
The ALMA receivers allow three ways of making broad-band total power measurements. Signals are

converted to baseband channels of 2 GHz bandwidth, of which there are 4 per polarization. First, each of
these is digitized and the samples are digitally detected at the correlator. The correlator allows integration
times as small as 1.0 msec. Second, a copy of the signal driving each digitizer also drives an analog square law
detector. Third, each IF signal from the front end drives a separate analog square law detector observing the
full 8 GHz IF bandwidth, although the front ends for some bands provide only 4 GHz of useful bandwidth.
Each analog detector has an integrate-and-dump filter with integration time as small as 2 msec. Nearly the
same radiometric sensitivity is available via all three methods. Using the broad IF detectors avoids some
analog signal processing and might produce better gain stability. Combining the measurements from several
baseband channels is not expected to allow gain fluctuations to be averaged out, since intrinsic fluctuations
are expected to be mainly in the front end (common to all baseband channels) and since extrinsic influences
are expected to be well correlated among the channels. For this discussion, B = 7 GHz is used throughout
as a good approximation to the single-polarization effective bandwidth for all detection methods.

Figure 3: Observing time sequences. Top: Beam switching mode. Bottom: On-the-fly mode.

Following the arguments in [2], consider two modes for such observations: beam switching via nutation
of the subreflector; and on-the-fly (OTF) mapping. Figure 3 shows plots of the time sequence for one cycle
of each of these modes. In beam switching, we take the cycle time to be 2T = 0.1 sec with 10 msec transition
time, based on the specifications for the nutation drive performance [20]. In OTF mapping, we take the
on-source scan time to be fixed at 1.0 sec for any source size; at 0.5 deg/sec maximum scanning speed,
this allows sources up to 0.5 deg across. The scan is broken into many integrations, and we take each to
have a duration of (1/2)θb/θ̇ where θb is the half-power beamwidth angle and θ̇ is the angular scanning
speed (i.e., 2 points per beam). Dead time between integrations is assumed negligible. Off-source reference
measurements are made between OTF scans while the antenna motion reverses direction. The reference
measurements are subtracted from the on-source measurements, but there are several ways that this might
be done. The average of the two end measurements surrounding a scan might be used as the reference for all
on-source integrations, or the end measurement nearest to each might be used. Usually the off-source time is
significant because the antenna acceleration is limited, so the integration time could be much longer than for
each on-source sample; or the reference integration could be limited to a portion of the off-source time that
is nearest to the on-source scan. The best choice depends on whether errors are dominated by thermal noise,
instrumental gain fluctuations, temporal fluctuations in atmospheric transmission or emission, or spatial
fluctuations in atmospheric transmission or emission. In this discussion, where we are concentrating on
the effects of gain fluctuations, we assume a strategy that uses an off-source integration time equal to the
on-source integration time, with the nearest off-source integration serving as reference for each on-source
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integration. This is illustrated in Fig. 3. In the absence of any instrumental and atmospheric fluctuations,
longer off-source integrations could reduce the variance for each on-off difference by at most a factor of 2.

Under these assumptions, var∆V/V 2
0 for each mode can be written as the Allan variance σ2(2, T, aT )

where
Beam switching: T = 0.05 sec, aT = 0.04 sec
OTF mapping: T = 0.5 sec, aT = θb/(0.5 deg/sec)

and the OTF integration time assumes the maximum source size (0.5 deg).

Table 3: Gain Fluctuations Equal To Thermal Noise

All cases: B = 7 GHz. OTF: θ̇ = 1 deg/sec, 1 sec/scan, 2 integrations/beam.

Mode θb (fL) aT T (BT )−1/2 [a] G1 [b] @.013/K [c] @.05/K [c] Ġ/G [d]
arcsec (GHz) sec sec (thermal noise) Hz−1/2 (typ. 300K) (typ. SIS) sec−1

Beam sw. n/a .04 .05 6.0× 10−5 1.1× 10−9 4.6 mK 1.2 mK .0012
OTF 57 (90) .017 .517 9.3× 10−5 1.4× 10−9 7.1 mK 1.9 mK .00019
OTF 18 (270) .0052 .505 1.6× 10−4 3.6× 10−9 12 mK 3.2 mK .00032
OTF 5.7 (900) .0017 .502 2.9× 10−4 1.0× 10−8 22 mK 5.8 mK .00058

[a] This is the rms error in ∆V/V0 due to thermal noise alone.
[b] Coefficient of gain fluctuation spectrum if it is entirely of flicker-noise type (using formulas in [10]).
[c] At the given temperature coefficient, rms temperature change in interval T if gain fluctuation is entirely

due to temperature.
[d] Fractional rate of change if gain variation is due to steady drift.

Table 3 shows the standard deviation of ∆V/V0 that results from thermal noise, 1/
√

BT . If this is the
same as the rms gain change in interval T , then the total rms error is

√
2 larger than with thermal noise

alone. Results are given for beam switching and for OTF mapping at several observing frequencies. Also
given in Table 3 are the coefficients G1 required to produce this amount of error if the gain fluctuations are
entirely of the “1/f” type, Sg(f) = G1(1 Hz/f); the rms temperature change in time T if they are entirely
due to a coefficient of .013/K, as reported for the BIMA IF amplifier/mixer/detector chain [16]; the rms
temperature change in T if they are entirely due to a coefficient of .05/K, as reported for an SIS mixer at
3.8K [15]; and finally the rate of change Ġ/G if only a steady gain drift occurs.

Lower 1/f noise and tighter temperature control are required for the beam switching mode than for the
OTF mode because the 10 msec transition time between beam positions forces relatively long integrations in
order to keep the observing efficiency high, so the thermal noise per integration is low. In OTF mode, there
is no significant time lost between on-source integrations, so each can be short; additional integrating time
is obtained by repeated scans, after obtaining off-source reference measurements. On the other hand, the
longer interval between on-source and off-source measurements in OTF mode allows a larger gain difference
to develop. With a 1/f gain spectrum, this tradeoff favors OTF. But if the gain spectrum is steeper, or if
there is a steady drift, it favors beam switching.

Comparing the values of G1 in Tables 1 and 3 shows that nearly all of the cryogenic amplifiers tested
have intrinsic gain fluctuations that would produce radiometer errors larger than the thermal noise in the
ALMA application, usually several times larger. The NRAO prototype 8–12 GHz IF preamplifiers for ALMA
SIS mixer receivers use transistors that are not represented in Table 1 (the “Cryo-3” wafer from JPL for
the input stage). By taking the median normalized value from Table 1, G1,norm = 3.0× 10−9 µm2Hz−1, and
scaling to N = 3, T = 4.0 K, and A = 20 µm2 (stage 1) and 15 µm2 (stages 2 and 3), as appropriate to the
prototype amplifiers [12], we estimate G1 = 1.2×10−9 Hz−1, which would produce errors at or slightly below
the thermal noise in ALMA. It should be emphasized that this is just a rough estimate, that large device-
to-device variations are possible, and that the cryogenic preamplifier may not be the largest contributor to
gain fluctuations. In observations where this intrinsic gain fluctuation is the dominant cause of error, an
improvement might be obtained by re-adjusting the bias for higher drain current; this will reduce the gain
fluctuations but increase the noise temperature.
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For the room temperature components, where we assume that most gain fluctuion is extrinsic, great care
is needed to achieve an overall temperature coefficient less than a few percent per K, especially considering
the large total gain required. Even with such a low temperature coefficient, Table 3 shows that stability
better than 10 mK is needed to keep the gain fluctuation error below the thermal noise. On the time scales
of interest here, 0.5 sec or less, this might be possible.

For SIS mixers, it appears that temperature regulation at the 3 mK level is needed to achieve the same
goal. This is especially difficult because the time interval is comparable to the cycle time of the Gifford-
McMahon cryocoolers intended for ALMA. If the mean temperature is higher than 3.8K, as seems likely,
then the data in [7] indicates that the temperature coefficient will be worse.

Limitations Due To Atmospheric Turbulence

The desire to keep the effects of gain fluctuations below those of the thermal noise follows from the
assumption that other effects on radiometer accuracy, in particular atmospheric turbulence, will also be
below the thermal noise. There is evidence for this from site surveys and atmospheric modeling, but direct
measurements of the fluctuations in emission and absorption of the atmosphere over ALMA’s frequency
range are not available on the time scales and angular scales that are relavent to the beam-switched and
OTF observing modes under consideration. Instead, we have observations at the Atacama site of the phase
fluctuations at 11 GHz in a fixed direction at relatively short sampling period (1 sec) from the site testing
interferometer. From these the fluctuations in column density of water vapor can be derived, and by assuming
that this same water vapor is the dominant cause of mm-submm absorption it is possible to derive the
fluctuations in that absorbtion.

This exercise was done [3] in the context of the Millimeter Array project, which was intended to have a
maximum frequency of about 350 GHz and a bandwidth of about 2 GHz per polarization. The interferometric
path length was converted to 230 GHz opacity by ∆w = 6.3∆l and ∆τ = r(f) ∆w where w is the column
density of water vapor, l is the microwave path length, τ is the opacity at frequency f , and r(f) is the opacity
per unit density of water. The value r(230 GHz) = .03 mm−1 was derived from an atmospheric model. For
ALMA, we now need to consider that the larger bandwidth reduces the thermal noise floor, and that we will
be observing at higher frequencies.

It was found in [3] that at 230 GHz the 50th percentile fluctuations in antenna temperature at 0.1
sec interval should be ∆Ta = 5.3 mK (0.16 Jy at 30 Jy/K), or ∆Ta/Tsys = 5.4 × 10−5 if Tsys = 100 K;
extrapolating to .05 sec interval gives about 2.6 × 10−5, which is adequate to support the beam switching
case considered in Table 3. Similarly, at 0.5 sec interval they found 27 mK (0.8 Jy) or 2.6× 10−4, adequate
for the OTF case at 270 GHz in Table 3, but only just equal to the thermal noise.

To convert the results to other frequencies, the FTS measurements reported in [21] can be used. These
give zenith absorption from 150 to 1500 GHz derived from tipping measurements of emission. They cover
only a brief time period (34 hours) during most of which the weather conditions were reported to have
been excellent. Fitting the individual spectra to an atmospheric model shows that 90% of the absorption
is explained by water vapor alone at all frequencies except near narrow oxygen lines. The opacity at any
frequency varied with time by about a factor of 9, and the tipping procedure limited the time resolution to
∼15 min, but excellent correlation was found among frequencies in the various windows. For example, the
ratios of 675 GHz and 875 GHz opacities to 220 GHz opacity were found to be 21.7 ± 0.2 and 23.0 ± 0.3,
respectively. Assuming that the fluctuation scale r(f) varies in the same way, we obtain the results in Table
4 for various frequencies in the sub-mm windows.

Table 4: Atmospheric Emission Fluctuation vs. Frequency

50th percentile rms fluctuations derived from data in [3] and [21].

fL τf/τ220 r(fL) τ̄ Tsys ∆Ta/Tsys

GHz [21] mm−1 K at .05 sec at 0.5 sec

220 1.00 0.03 .070 101 2.6× 10−5 2.6× 10−4

345 3.62± .03 0.11 0.26 190 7.3× 10−5 7.3× 10−4

410 7.05± .08 0.21 0.50 256 1.2× 10−4 1.2× 10−3

675 21.7± 0.2 0.65 1.52 455 1.2× 10−4 1.2× 10−3

875 23.0± 0.3 0.69 1.62 537 1.2× 10−4 1.2× 10−3
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Table 4 uses the 50th percentile fluctuations in water vapor derived from the test interferometer [3],
but it uses, at each frequency, an average opacity τ̄ corresponding to 2 air masses at the median conditions
that occurred during the clear-weather FTS observations in [21], which is far lower than the 50th percentile
in average opacity, but closer to the conditions under which observations will be done at these frequencies.
Measurements at 220 GHz covering all of calendar year 2002 [22] indicate that these conditions occur at
the 11th percentile. A proper analysis requires knowledge of the joint statistics of total water vapor and
fluctuations in water vapor (turbulence), and the appropriate data is available in the form of simultaneous
measurements of 220 GHz emission and of 11 GHz phase fluctuations, but it has not yet been examined
in this way.2 The total and the fluctuations total are not related deterministically, but there is a weak
correlation [26]. At 220 GHz and below, where the total opacity is usually low, the statistics of total water
vapor are less important and can be ignored.

The system temperatures in Table 4 are computed from Tsys = (250 K)(1 − e−τ̄ ) + 8hfL/k, where the
first term is an estimate of the atmospheric emission and the second is an estimate of the receiver noise.

Comparing Tables 3 and 4, it seems that atmospheric emission fluctuations will be larger than the
thermal noise at 345 GHz and above, for both beam switching and OTF mapping. At 410 GHz and above,
the rms error will be at least 2 times worse for beam switching and 10 times worse for OTF mapping.
Nevertheless, this does not allow the gain stability requirements to be relaxed because they were already less
stringent at the higher frequencies. At 270 GHz and below, where the atmosphere is more transparent and
hence its emission is more stable, the radiometric sensitivity of ALMA will be limited by gain fluctuations
unless their magnitudes are below those suggested by the first two lines of Table 3. This assumes that
ALMA’s overall gain stability is similar at all bands, and this should be the case because the components
believed to be most important to the gain stability are common or identical.

Calibration

So far, we have considered only the question of whether the sensitivity of wide-band continuum radiom-
etry might be limited by gain fluctuations. In the planned observing modes, we found that only the gain
variations on time scales less than 1 sec are important. A separate issue is the calibration of the telescope,
which is mainly a matter of determining the absolute value of the overall gain g rather than just its fluctu-
ations. For interferometry, knowledge of the complex gain is needed, while for radiometry knowledge of |g|
is enough.

Absolute calibration is expected to rely primarily on observations of known astronomical sources, in-
volving integration times and time intervals much larger than 1 sec. It is possible to adopt a two-tiered
strategy, where variations in gain are tracked over relatively short time intervals (a few seconds to minutes)
using standards built into the telescope, and absolute gain is determined less often (many minutes) using
celestial standards. The details of the process are beyond the scope of this report, and indeed the strategies
most appropriate for the various modes of ALMA are still being debated. Clearly, though, the accuracy of
calibration is limited by any variation in gain over the intervals between measurements against some stan-
dard. A calibration accuracy goal of 1% in power has been suggested [23], although it is usually assumed that
this will be limited by unmeasured effects of the atmosphere rather than gain variations of the instrument.
Interferometric phase calibration is likely to be far worse than this, with a goal of 10% (0.1 radian) [24].
(Phase stability will be the subject of a separate report.)

We take the interval between absolute astronomical calibrations to be no larger than 1000 sec. (Some-
times it may be possible to make the interval much shorter.) Then it is reasonable to adopt the requirement
that |g|2 not vary by more than 0.5% and that 6 g not vary by more than 0.04 radian over this interval,
since not all of the error can be allocated to gain changes. If the dominant cause of gain variation for such
intervals is physical temperature, then the data in Table 2 imply that temperature stability over such time
intervals should be better than 0.38 K for room temperature components and better than .02 to 0.1 K for
SIS mixers.

2 Such an analysis is underway, so more definitive results should soon be available. Meanwhile, the
arguments given here can be considered a rough indication of what to expect.
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APPENDIX A: Derivation of Radiometer Output Power Spectrum

Let n(t) be bandlimited white Gaussian noise with bandwidth B, center frequency f0 >> B, and noise
temperature Ts, so that its (2-sided) power spectral density is Sn(f) = kTs/2 for f0 −B/2 < |f | < f0 + B/2
and zero elsewhere. Using the radiometer model of Fig. 1,

v(t) = [g(t) n(t)]2 (A1)

where we have temporarily ignored the influence of the lowpass filter at the output. The autocorrelation
function of v(t) is then

Rv(τ) = 〈[g(t)n(t)g(t − τ)n(t − τ)]2〉
= 〈[g(t)g(t − τ)]2〉〈[n(t)n(t − τ)]2〉

(A2)

where we have assmued that g(t) and n(t) are independent. The first factor can be written

〈[g(t)g(t − τ)]2〉 = 〈[g0 + δg(t)]2 [g0 + δg(t − τ)]2〉
= G2

0 + 2g3
0 〈δg(t − τ)〉 + g2

0〈δg(t − τ)2〉 + 4g2
0〈δg(t) δg(t − τ)〉

+ 2g0〈δg(t) δg(t − τ)2〉 + 〈δg(t)2 δg(t − τ)2〉.
(A3)

Since 〈δg〉 = 0 by definition, and letting 〈δg2〉 = σ2
g and Rg(τ) = 〈δg(t) δg(t − τ)〉, this simplifies to

〈[g(t)g(t − τ)]2〉 = G2
0 + G0 σ2

g + 4G0 Rg(τ) + σ4
g + 2Rg(τ)2 (A4)

where the last term of (A3) was expanded by using the theorem

〈abcd〉 = 〈ab〉〈cd〉 + 〈ac〉〈bd〉 + 〈ad〉〈bc〉 (A5)

which applies to zero-mean, normally distributed random variables. Finally, applying the same theorem to
the second factor of (A2) and dividing by P 2

0 G2
0, we find after some rearrangement

Rv(τ)

P 2
0 G2

0

= 1 +
σ2

g(G0 + σ2
g

G2
0

+
Rg(τ)[2G0 + Rg(τ)]

G2
0

+

{

2 +
4Rg(τ)[2G0 + Rg(τ)]

G2
0

+
σ2

g(G0 + σ2
g)

G2
0

}

Rn(τ)2

P 2
0

.

(A6)
Now assume that the gain fluctuations are small, so G0 >> σ2

g ≥ Rg(τ). Then by neglecting terms of
order σ4

g/G2
0 or smaller, (A6) simplifies to

Rv(τ)

P 2
0 G2

0

= 1 + σ2
g/G0 + 2Rg(τ)/G0 + [2 + σ2

g/G0 + 8Rg(τ)/G0]
Rn(τ)2

P 2
0

. (A7)

As a final assumption, let the gain fluctuations be slow compared with 1/B, so that Rg(τ) ≈ Rg(0) = σ2
g for

all τ where Rn(τ) is signficant, giving

Rv(τ)

P 2
0 G2

0

= 1 + σ2
g/G0 + 2Rg(τ)/G0 + (2 + 9σ2

g/G0)
Rn(τ)2

P 2
0

. (A8)

The desired normalized power spectrum of v(t) is the Fourier transform of (A8), or

Sv(f)

V 2
0

= (1 + σ2
g/G0) δ(f) +

2Sg(f)

G0

+ (2 + 9σ2
g/G0)

Sn(f) ∗ Sn(f)

(kTsB)2
(A9)

where ∗ denotes convolution and we have used the facts that P 2
0 G2

0 = V 2
0 and P0 = kTsB. The power

spectrum Sn(f) was given at the beginning of this Appendix, and its self-convolution is just B(kTs)
2/2 for

|f | << B. We have so far ignored the low pass filter (LPF) in Fig. 1, but it can now be accounted for
by dropping the components of Sn(f) ∗ Sn(f) that are near 2f0. Using these facts and making the further
approximation of dropping the terms in σ2

g/G0 from (A9), again because of the assumption that the gain
fluctuations are small, we get the result quoted at equation (1).
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