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Abstract

The amplitude of standing waves are calculated in various subreflector geometries
(subreflector with absorber, subreflector with aperture to accommodate calibration
loads). The ability of scattering cones to reduce the standing waves are compared
for several types of cones (straight cone, inverse straight cone within the aperture,
curved cone) and cone sizes. At 3mm, the peak-to-peak ripple due to standing
waves is around 0.7% for a subreflector with absorber, which can be reduced by a
factor of 9 (~0.08%) by fitting a straight cone on the blockage zone. The ripple is on
the other hand increased to 1.4% when the subreflector presents an aperture in the
blockage zone. It can further be reduced to 0.8% by fitting an inverted cone inside
of the aperture. Using a curved cone instead of a straight one can only moderately
improve the standing wave level.

We recommend implementing a straight cone covering somewhat more than the
blockage zone. Further optimization of this parameter requires more elaborate soft-
ware and should be carried out jointly with the Receiver and Antenna IPTs.

1 Introduction

At the feed horn, part of the incoming radiation is reflected back to the subreflector, gen-
erating a system of standing waves. The amplitude of the standing waves can be reduced
by fitting a appropriately shaped cone over the blockage area of the subreflector. These
simulations calculate the amplitude of the reflection coefficients at the subreflector for
several types of cones. The abilities of the cones to reduce standing waves are compared.

This memo is mostly oriented towards astronomers, to provide them with a simple
enough answer on the baseline ripple level. It only considers the on-axis reflection coeffi-
cient, and does not consider effect on the antenna gain and beam shape.

2 (Geometry

2.1 Notations

In this document, we use the following notations (cf. figures below):
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e Particular points

— F': secondary focus (Cassegrain focus)

— A: apex of the subreflector

— O: origin of the hyperbola, middle of the segment FF’, where F’ is the primary
focus

e Variables

— 6: angle defining the position on the subreflector (or cone). It is measured
from the secondary focus.

— 0y: defines the size of the cone, when there is one.

— r(#): distance between the focus and the position on the surface of the subre-
flector (or the cone) defined by the angle 6.

— «: semi-angle of the straight cone

— R.: curvature radius of the curved cone
e Constants

— L: distance between F and the apex of the subreflector A

— e: eccentricity of the hyperbolic subreflector

— a: distance OA

— ¢ distance OF (so that c+a =L, and c =€ a, and a = L/(1 + ¢)).

— B,: the angle 6, defines the size of the blockage zone on the subreflector
— 0,: defines the size of the subreflector

— dp: diameter of the aperture in the subreflector, which was chosen the same
size as the blockage zone. The depth of the aperture was taken as dy + €.

For ALMA:
e =1.105263
L =5883m

0, = 0.25° and d, = 0.051m
s = 3.58° and d; = 0.750 m (diameter of the subreflector)

D = 12m: diameter of the primary

fp =4.8m: focal length of the primary

f/D = 8.0: final f/D of telescope

v = 0.750m: primary vertex hole clear aperture

Note that the value taken for 6, is an arbitrary value slightly larger than the real block-
age zone calculated for on-axis receivers (for which 6;** is 0.2238° and dj** is 22.98 mm).
The diameter of the blockage zone for the actual design (off-axis receivers) will also be
larger than 22.98 mm.



2.2 Studied cases

Several geometries were investigated:

1. simple hyperbolic subreflector, with and without absorber on the blockage zone

Secondary

Figure 1: Simple hyperbolic subreflector. The angle (from the secondary focus) defining
the blockage zone is noted 6, the angle defining the edge of the subreflector is 6, and
r(0) is the distance between the secondary focus and the point on the subreflector defined
by the angle 6.

In this case, the distance r(6) for 0 < 0 < 6 is simply given by:

L(e-1)
r0) = e cos(f) —1

2. straight cones, tangent to the subreflector at a point defined by the angle (measured
from the secondary focus) 6, (Fig.2). The semi-angle of the cone « is related to 6
by:

a (e —1)

a tan(a) + cy/tan?(a) — (€2 — 1)

tan(@o) =

The distance r(6) is given by:

sin () 5
<f<L =
0<0<6y : r(0) Sn(a—0) (ea+ a*/xo)
L(e—1)
<0< =
bo<0<0, (@) e cos(f) —1
with .
g — a tan (o)
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feed horn subreflector

Figure 2: “Straight” cone, tangent to the subreflector at angle 6.

3. cones of curvature radius R,, tangent to the subreflector at the point defined by 6,
(Fig. 3).

The distance 7(6) in this case is:

0<60<6by : r() = (x4 c) cos () + y, sin (0)
+ V/[(zc + ¢) cos () + y. sin (0)]2 — [(zc + ¢)2 + 32 — R?]
L(e—1)
e cos(f) —1

<0<, : r(0) =

where

e tan®(6p) + VA 9 2,2 2.2 2
Ty = =1 — tan?(00) with A = (e* — 1) e® tan*(6y) + a” (e — 1)
yo = tan(fp) (zo + )

R.(e? —1)
\/( — 1) +y5/73

Yo = yo— cyO/xO
V(e —1) + 3/}

e = Tog—

feed horn subreflector

Figure 3: Cone of curvature radius R, tangent to the subreflector at angle 6.

4. hyperbolic subreflector with aperture at the blockage zone, in order to accommodate
calibration devices. The bottom of the aperture retains the hyperboloidal shape of
the subreflector. For simplicity in the calculation, the edges of the aperture are
slightly conical (not shown on the figure), so that the diameter of the aperture is dj,
at the subreflector apex, and d, + 2 d,/ sin (6,) at the bottom of the aperture.



Secondary

Figure 4: Hyperbolic subreflector with aperture at the blockage zone

The distance r(6) is:

L(e—1) L(e—1)
e cos(O)—1+26 cos (6,) — 1

L(e—1
9b§0§03 . T(Q)ZW

0<6<86, : r(0)= sin (6,) + €

5. hyperbolic subreflector with aperture at the blockage zone, and inverse cone in the
aperture in order to reduce the standing waves arising from the discontinuity in the
subreflector.

Secondary

Figure 5: Subreflector with inverted cone within the aperture

The distance r() is:

sin () Le-1) .
<0< _ L A 7
0<0<6b sin(a+9)x<xb+x6+ ecos(ﬁb)—lsm(b)_lr6
L(e—1)
< < : = - @@
b < 6 <6, r(®) e cos(f)—1
with
L(e-1) tan (6p) L(e-1) )
"= tan (B)e cos 6 —1 ™ T () S\ e cos(@) -1 €

The curvatures are exaggerated on the figures for readability.
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3 Determination of reflection coefficient

The complex reflection coefficient vy is given by :
y = / T(TY* - dS
subref

with W = F(0) - exp (—jkr(6)), F(6) is the gaussian illumination function, k is the wave
vector. For the calculation, a taper of 10dB at the edge of the subreflector was chosen.

Thanks to the symmetry of the geometry, the reflection coefficient can be written (e.g.
Padman & Hills 1991):

0s
Y= / 2 - F2(6) sin(6) exp (—2jkr(0))d0
0
This expression can be asymptotically developed into:

2T 2 2 .
= m x [F*(0o) (e cos (6p) — 1)" exp (—2jkr(6)) (1)

— F?(0;)(ecos (6,) — 1)* exp (—2jkr(0;))]

The first term (in 6) arises from the reflection at the centre of the subreflector whereas
the second term (in 6;) arises from the reflection at the edge. The interaction of these 2
terms generates an oscillation of the reflection coefficient with the wavelength. In reality,
the second term will not have a large impact, since the receivers will be off-axis and the
subreflector not perfectly circular. The oscillations should therefore be smaller than in
the figures shown in Section 4.

From the factor in 1/k in Eq.1, it can be seen that the mean value of the reflection
coefficient is proportional to the wavelength. Standing waves will mostly be a problem at
low frequencies.

Y

For ALMA, the frequency of the standing waves is around 25 MHz.

4 Results

The amplitude of the reflection coefficient was calculated for the previously described
geometries, as a function of the wavelength A (A around 3 mm), for various angles 6 (ie
various cone sizes), and for different curvature radii of the cone in the case of a curved
cone (Fig. 3). The results are presented as 3 dimensional plots?.

Results are presented here for wavelengths around 3 mm (100 GHz). For shorter wave-
lengths, the amplitude of the standing waves decreases.

All calculations were performed for on-axis receivers.

4.1 Subreflector with absorber

The reference case is the simple hyperbolic subreflector, without or with an absorber
covering exactly the blockage zone. The amplitude of the reflection coefficient as a function
of wavelength in those 2 cases is shown in Fig.6. As mentioned in the previous section,

IThe Y axis carries the opposite of the Y coordinate for presentation reasons, so that ie —R, is plotted



the oscillation with a frequency of ~1.2 GHz is described by the interference of both terms
in Eq. (1), and the general slope arises from the wavelength proportionality.

Both cases give similar results, i.e. an average amplitude for the reflection coefficient
of 451073 at 100 GHz.

4.2 Straight Cone

Figure7 shows for the tangent cone on the subreflector the variation of the reflection
coefficient with the wavelength and the point of tangency defined by 6.

The reflection coefficient drops when the cone becomes larger (and is thus tangent at
larger 6y/6, ratios). This decrease is about a factor of 9 for 6y/6, > 1.1, with respect
to the case without any cone (or §, = 0). This corresponds to a semi-angle of the cone
of 87.3°. Table 1 gives the correspondence between cone semi-angle and the ratio 6,/6,
here chosen as parameter. Very large cones (6y/6, > 1.5) can reduce the standing waves
further but represent no solution since they will also strongly modify the beam of the
instrument.

Table 1: Correspondence between cone semi-angle and the ratio #y/6, in the case of a
straight cone of semi-angle o, tangent on the subreflector at a position defined by the
angle 6.

a (°) ‘ 89.5 89 885 8 875 87 86.5 86 855 85

6o/6s ‘ 0.21 0.42 0.63 0.84 1.05 1.26 1.48 1.69 1.90 2.11

Using a cone of 6y/6, = 1.1, the average amplitude of the reflection coefficient at
100 GHz is 5107*.

4.3 Cone of curvature radius R,

Figure 8 shows the variation of the reflection coefficient with the wavelength and the
point of tangency defined by 6, when a curved cone of curvature radius R, is fitted on
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Figure 6: Reflection coefficient for a hyperbolic subreflector, with and without an absorber
covering the blockage zone.



Reflection Coefficient for tangent cone (straight cone)

A (mm)

Figure 7: Straight cone of semi-angle a: reflection coefficient as a function of wavelength
A (mm) and the ratio 6y/6y. Left panel: 3 dimensional plot showing the reflection co-
efficient as a function of wavelength and size of the cone (defined by the ratio 6,/6, -
for correspondence with the angle «, see Table 1).Right panel: reflection coefficient as a
function of frequency for 3 sizes of cones, 6/6, = 0 ie no cone (black curve), 6,/6, = 1
(red curve), 6y/6, = 1.1 (blue curve), and 6y/6, = 1.4 (yellow curve).

the blockage zone (same as Fig. 7 for a curved cone). The curvature radius was set to 1
m for this figure.

The variations of the reflection coefficient are very similar to the case of the straight
cone. They are however not identical, and the oscillations are not in phase, which means
that for the same cone size, and a fixed curvature radius, the curved cone will not always
be better than the straight one (cf. §5).

Cuts of the plot on the left panel of Fig.8 are shown in the right panel, for R, = 1m
and 2 different wavelengths. The case of the straight cone is plotted for comparison. Fig.8
illustrates that there is an improvement in the reflection coefficient when the cone (curved
or straight) covers significantly the blockage zone. Best values are obtained for 6y/6, > 1.

Figure 9 shows the variation of the reflection coefficient with the wavelength and the
curvature radius R, for a ratio /6, = 1.

The reflection coefficient is high at low curvature radii (10 cm), and drops sharply
until about R, ~ 1 m and then evolves towards its asymptotical value. The asymptotical
value is the value obtained for the straight cone of the same size (same 6y), corresponding
to an infinite curvature radius. The variations of the reflection coefficient with R, depend
on the size of the cone, as shown in Fig.9. It also varies with the wavelength for a given
cone size.

Finally, Fig. 10 shows the reflection coefficient at a given wavelength (here 3mm) as
function of the curvature radius and 6y/6,. Larger cones give better results (especially
for 0y/60, > 1) although they will modify the primary beam and reduce the useful surface
of the subreflector for 65/6, > 1. At 3mm, cones having a curvature radius of ~ 1m
give slightly better results than straighter ones (R, > 1m), and much better results than
curvier ones (R, < 1m).
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Reflection Coefficient for tangent cone of curvature radius Rc
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Figure 8: Reflection coefficient for a curved cone of size defined by 6, and curvature
radius R.. Left panel: 3-dimensional plot showing the reflection coefficient as a function
of wavelength A\ (mm) and the ratio /6y, for R, = 1 m. Right Panel: reflection coefficient
as a function of the ratio 6y/6,, for R, = 1m and 2 wavelengths: 3mm and 3.1 mm. The
cut for the straight cone at 3 mm is plotted for comparison (dashed line).

4.4 Subreflector with aperture

Figure 11 shows the case of a subreflector with an aperture in the central blockage zone.
The depth of the aperture was chosen to be roughly equal to the diameter of the blockage
zone dp, but was allowed to vary by a fraction of the wavelength around d;, €. The effect
of the aperture is to increase the reflection coefficient by about a factor of 2 with respect
to the case without aperture (and without cone), to around 91073.

4.5 Subreflector with aperture and inverted cone within the
aperture

Figure 12 shows the modification of the previous case when a reversed cone of semi-angle
« is put in the aperture. Reversed and non-reversed cones were investigated but the
results were the same (in terms of reflection coefficient, but of course not in terms of
spillover). By increasing the semi-angle « of the cone, the standing waves can be reduced.
In this case, the cone always has the size of the aperture when its semi-angle « is increased,
therefore increasing a will not modify the antenna gain. We can then reduce the reflection
coefficient at 100 GHz to about 51073,

5 Comparison Straight cone / curved cone

This section compares the reflection coefficient obtained in the case of a straight cone
defined by 6,/6, and a cone of curvature radius R, of the same size (ie with the same
6o/6). Figure 13 shows this comparison for 6y/6, = 1 and 6,/6, = 1.1.

In the case where 6,/6, = 1, the reflection coefficient is decreased with respect to the
straight cone for R, > 1m. For a slightly larger cone (6y/6, = 1.1), the curvature radius
has to be larger (R. > 2m) to improve the reflection coefficient of the curved cone over
that of the straight cone.



Reflection Coefficient for tangent cone of curvature radius Rc
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Figure 9: Curved cone: (left panel) - reflection coefficient as a function of wavelength
A (mm) and curvature radius R,, for 6,/6, = 1. (right panel) - at 3mm, reflection
coefficient as a function of R, for different 6,/6, ratios.
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Peak-to-peak ripple

The amplitude b of the standing wave is given by :

b

atg

1o TsTm €xp (=21 V)

where a is the amplitude of the incident wave, r, the reflection coefficient at the subreflec-
tor, r,, the reflection coefficient at the horn, and ¥ the complex illumination function of
the subreflector. The voltage standing wave ratio (in power) is therefore close to 1+4 74 7y,.
In the following, we assume r,, to be 0.4.
Table 2 sums up the baseline ripple (in percentage of the baseline level) in the various
geometries described in this memo. The various cases are recalled below.

- case 1: simple hyperbolic subreflector
- case 2: subreflector with straight cone

- case 3:

- case 4: aperture in subreflector

- case d:

subreflector with curved cone (of curvature radius 1.8 m)

aperture in subreflector and inverted cone in aperture

For cases 2 and 3, the size of the cone is such that 6,/6, = 1.1.

Table 2: Amplitude of the baseline ripple for the various geometries studied.

case 1 case2 case3 case4d casebd

0.7% 0.08% 0.06% 1.4% 0.8%

These numbers show that the better design for the reduction of the standing waves is a
hyperbolic mirror with a cone covering the blockage zone or a little larger (6, /0, = 1.1—1.5,
angle 86.5 — 87.2°). Because of the discontinuity at the aperture edge, designs with
apertures in the subreflector are much less favorable, even with a cone within the aperture.
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Reflection Coefficient for tangent cone of curvature radius Rc

Wavelength = 3 mm
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Figure 10: Curved cone: reflection coefficient as a function of curvature radius R, and
6o/6y, for A\ = 3mm.

7 Discussion and Conclusions

The figures presented above clearly show that the best solution to reduce standing waves is
to provide a tangent cone to the subreflector, and that a hole should be avoided. Tangent
cones larger than the blockage zone offer a better reduction in standing wave level than a
cone just matching the blockage.

With a cone of radius 6, = 1.16;, a slight improvement is further obtained by using
a shaped cone with a curvature radius 1.8 m. Better results could also be obtained by
using slightly larger cones. However, such further optimization should check also that the
antenna gain is not significantly affected.

It is important to note that optimization of the cone shape cannot be done at a single
frequency, but must be performed over a significant range. This is due to the existence
of a series of local minima of the reflection coefficient. These minima occur at changing
frequencies as a function of the cone shape. Instead, we must consider the worst case
scenario for the standing waves, i.e. the envelope of the local maxima of the reflection
coefficient as a function of frequency.

In all cases presented here, we have explored a much larger range of wavelengths (down
to 0.35 mm), ensuring that the reduction obtained in the 3 mm band was not there at the
expense of an increase at the higher frequencies. We found that the asymptotic behavior
(coefficient oc A) was reached for wavelengths smaller than about 1.5 mm.

Considering manufacturing capabilities, and the fact that we have neglected a number
of effects (off-axis receivers, subreflector misalignment), we recommend the adoption of a
straight cone of radius 8y = 1.1 — 1.56,.

Acknowledgements: we thank Richard Hills for helpful discussions and comments.
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Figure 11: Reflection coefficient for a subreflector with an aperture in the blockage zone.
The depth of the aperture is d, + €, with € a fraction of the wavelength. Left panel: 3
dimensional plot representing the reflection coefficient as a function of the frequency and €
(here € varies between -2.5 and +2.5mm). Right panel: Reflection coefficient as a function
of frequency for € = 0 (black curve) and € = 0.5mm (red curve).
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Refletion Coefficient
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Figure 12: Reflection coefficient for a subreflector with an aperture in the blockage zone,
and an inverted cone within the aperture to reduce the standing waves. The depth of
the aperture is dy. Left panel: 3 dimensional plot representing the reflection coefficient
as a function of the frequency and the semi-angle « of the cone. Right panel: Reflection
coeflicient as a function of frequency for o = 90° (black curve), ie no cone, o = 80° (blue
curve), and o = 60° (red curve).
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Figure 13: Comparison of the reflection coeflicient for a straight cone and a cone of various
curvature radii. Solid line: straight cone. Dashed lines: cone of curvature radius R, (Red:
R, = 0.6m, blue: R, = 1m, yellow: R. = 1.4m, black: R, = 1.8m). Top: 6,/6, = 1.
Bottom: 6y/60, = 1.1.
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