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Abstract

The alignment of the tapered illumination with the antenna's primary dish will not
be perfect, and for ALMA has been speci�ed as having an rms error of 0.1 dish radii at
all frequencies, and the resulting image errors are therefore independent of frequency. If
uncorrected, simulations indicate the e�ects of this illumination o�set will dominate both
pointing and surface errors for ALMA's wide �eld imaging at frequencies up to about
500 GHz.

The main e�ect of a shift in the tapered illumination on the dish is a phase gradient
across the far �eld voltage pattern, which is given by the Fourier transform of the illu-
mination (neglecting surface errors). A secondary e�ect will be a distortion in both the
voltage pattern's amplitude and phase, caused by the asymmetric illumination pattern on
the dish. The phase gradient in the voltage pattern is identical in e�ect to an error in the
baseline. However, the geometry of the baseline and the geometry of the voltage pattern
phase gradient are di�erent and will have di�erent time dependences. The phase gradient
can be e�ectively treated by changing the (u; v) coordinates of each visibility to reect
the weighted antenna center accounting for the dish illumination o�set. About 85% of the
deviation of the o�set far �eld voltage pattern can be corrected by removing the phase
gradient; the residual deviation is due to the asymmetric illumination, and is dominated by
a bipolar pattern. This indicates that the majority of the e�ect of the o�set illumination
can be removed by adjusting the (u; v) coordinates prior to imaging.

The calibration parameters required to perform the (u; v) correction (ie, the phase gra-
dient in the voltage pattern) should be constant with time for each antenna/feed. Thermal
noise and atmospheric phase errors will not hamper the measurement of the phase gradi-
ent parameters at low frequencies, but will be of concern in determining these parameters
at high frequencies. However, both types of error should average down if the calibration
observations are performed correctly.

Detailed numerical imaging simulations indicate that after correction of the (u; v) coor-
dinates, the image quality is restored to the level expected when illuminations o�sets are
not present. In fact, often the image quality of the corrected images was better than when
illuminations o�sets are not present. This paradoxical result may be explained by the fact
that feed leg and subreector blockage were also included in the simulations. Without the
illumination o�sets, all antennas' voltage patterns are a�ected in the same way by the feed
legs, resulting in low level asymmetric side lobes that are not reected in the symmetric
beam model. However, the a�ects of the random asymmetric illuminations of the di�erent
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antennas tends to smooth out these low level side lobes, making the problem less systematic
and less damaging.

1 Introduction

An o�set in the feed from its desired location at the Cassegrain focus will result in a pointing
o�set. This pointing o�set can, of course, be calibrated. If the feed is not o�set from the
desired position, but instead the feed is not centrally illuminating the primary, there will not
be a pointing error, but the far �eld voltage pattern will have a phase gradient across it. A
really gross mispointing of the feed will substantially decrease the sensitivity, as the feed will
illuminate less of the dish and more of the ground. For an o�set of 0.1 radii and our 10dB
Gaussian taper, the integrated illumination will decrease by about 2% over the no o�set case.
The noise will increase by more than 2%, as the hot ground is being more illuminated. While
this is a modest loss of sensitivity, it seems that it is relatively easily corrected. If the rms o�set
is 0.1 radii, there will be some antennas with much worse o�sets and integrated illuminations
being decreased by about 6%. It will certainly be bene�cial to realign the feeds to eliminate
such outliers.

However, imaging, rather than sensitivity, is the primary concern of this memo, so we refocus
on the properties of the far �eld voltage pattern. To �rst order, the illumination o�set and the
phase gradient in the voltage pattern will not a�ect single dishe imaging, as the primary beam
is formed from the voltage pattern times its own complex conjugate, which removes the phase
gradient. The e�ect of illumination o�set has never been observed on the voltage patterns of
existing interferometers; it vanishes for on-axis observing, so will not e�ect the dynamic range
of most VLA or VLBI observations. It is probably present in wide �eld imaging with present
day interferometers, but wide �eld imaging is often dynamic range limited by other problems,
such as errors in the total power data or ine�ective deconvolution algorithms.

When the e�ect of \illumination o�set" was �rst pondered last year, the antenna group was
charged with placing a requirement on the accuracy with which the feeds' orientation must be
set. The reasoning was to equate the phase errors which result from the illumination o�set
to the phase errors which result from pointing errors at 230 GHz. So, the speci�cation that
the peak of the illumination would be within 0.1 dish radii (rms) of the primary's center was
adopted.

However, there were two problems with this speci�cation: most glaring is that pointing
errors (as a fraction of the beam) are proportional to frequency, while the illumination o�set
speci�cation is independent of frequency. This results in the situation where mosaics at fre-
quencies lower than 230 GHz (ie, frequencies at which nonthermal objects are brightest and
noise is lowest, leading to a potential dynamic range of 106) will be limited by the illumination
o�sets. Additionally, the illumination o�sets may not be as randomized as antenna pointing
errors; a given antenna is stuck with its illumination o�set for the entire observation, while sev-
eral aspects of pointing errors are expected to be much more random, decreasing the negative
e�ects of pointing errors, and possibly leaving observations at frequencies higher than 230 GHz
being dominated by the illumination o�sets.

The surface error simulation campaign which was launched to justify the budgeting of the
ACA (ALMA Compact Array) included illumination o�sets almost as an afterthought. It was
simple enough to include: why not, I thought, disregarding my marching orders. However,
when I looked at the results of the full-blown simulations including pointing and surface er-
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rors alongside the illumination o�sets, the image quality was essentially at with frequency,
not very good at low frequencies and degrading slightly only at the highest frequencies (see
Figure 1). If image quality was limited by pointing errors, we would expect image quality to
go like 1=�. If image quality was limited by surface errors, we would expect an even steep-
er relationship, approaching 1=�2 (Cornwell, Holdaway, and Uson, 1994). However, the at
nature of the simulated image quality with frequency indicated that the illumination o�set,
with a speci�cation that did not depend upon frequency, was limiting the images up to about
500 GHz (see Figure 2).

While the severe impact of the illumination o�set on mosaicing image quality was a surprise,
the simple method of correcting the o�set was a relief.

2 Simulating Voltage Patterns

Consider this thought experiment: a very large dish is underilluminated with a Gaussian taper
such that the illumination actually falls to zero before the edge of the dish. The far �eld voltage
pattern is given by the Fourier transform of the voltage illumination of the dish. Now, consider
our shift of the dish illumination. An o�set in the aperture illumination will result in a sky
voltage pattern with the exact same amplitude, but a phase gradient across it, in the direction
of the shift and in amplitude proportional to the shift.

In our simulations, we use the more realistic illumination of a Gaussian taper down 10dB
in power at the edge. An example of the voltage illumination, complete with an illumination
o�set, central blockage due to the secondary of 0.7 m, and blockage due to feed legs of 0.08 m,
is shown in Figure 3. The dominant e�ect of the illumination o�set will be a phase gradient
in the far �eld voltage pattern. However, because this illumination does not fall to zero by
the time it gets to the edge of the primary reector (and also due to the asymmetric feed leg
and secondary blockage), other second order e�ects will be seen in the voltage pattern. For
large enough o�sets, signi�cant amplitude e�ects will be seen in addition to departures from
a simple gradient in the phase. A cut through the phase and amplitude of a far �eld voltage
pattern is shown in Figure 4. We see here that the residual phase after the gradient is removed
is fairly small. If the gradient is not removed, phase errors of tens of degrees can be made on
a source at the half-power point, potentially limiting image quality.

3 Overview of Corrections for the Illumination O�sets

3.1 A Complicated and Slow Correction Algorithm

Consider the situation we are in: we have voltage patterns which are di�erent in detail from
one antenna to another. These di�ering voltage patterns are essentially antenna dependent,
position dependent complex gains which are messing up our data and limiting our ability to
reconstruct it with a single primary beam model.

In principle, if the voltage pattern for each antenna is known accurately, given a model for
the brightness distribution, we can accurately calculate the e�ects of the voltage patterns on
the visibilities which correspond to that brightness distribution. We could create an iterative
algorithm which thereby removed the e�ects of the deviant voltage patterns on the data and
imaged the data cleanly. However, this algorithm is not only very complicated, but very
slow, since it needs to perform a Fourier transform for each baseline (as in simulating data
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Figure 1: Simulation results for a homogeneous array with only pointing errors and then with
both pointing errors and the 10% illumination o�set. For high SNR observations, the errors
below 500 GHz will be dominated by the illumination o�set if it is not corrected.
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Figure 2: A schematic representation of how the imaging errors due to illumination o�set,
pointing errors, and surface errors vary with frequency for mosaiced observations. (Imaging
errors will be inversely related to dynamic range or image �delity.) If left uncorrected, the
illumination o�sets could limit the quality of wide �eld imaging up to about 500 GHz.
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Figure 3: Example of the o�set illumination used to simulate the voltage patterns used here.
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Figure 4: Example of the phase gradient in the voltage pattern, and the residual phase after
the phase gradient has been removed, for one of the VP's simulated in the 10% o�set case.
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with di�erent voltage patterns for each antenna). There will probably be some situations
where this sort of algorithm is required, such as imaging in the presence of pointing errors
(Holdaway, 1993). There are likely modi�cations to the basic algorithm, such as only dealing
with the brightest sources in the �eld with this specialized antenna-dependent machinery, and
performing the usual FFT on all the rest of the �eld, However, this is still a scary algorithm,
to be avoided if possible.

3.2 A Simple and Fast Correction Algorithm

The heart of a simple, fast, and highly e�ective correction to the illumination o�set lies in the
recognition that the o�set of illumination is really an o�set of the physical baseline.

A shift in the dish location would correspond identically to a shift in the baseline. A shift
in the baseline would have three consequences:

� a change in w, or the geometrical delay, resulting in phase errors if not corrected.

� decorrelation across the band due to the phase errors which change with frequency.

� the incorrect (u; v) would be attached to each visibility, equivalent to an image plane
phase error equal to

e2�i�u�x; (1)

where �u is the vector error in the (u; v) coordinate, and x is the vector distance from
the pointing center.

In our situation, the dish itself is not shifted, but the illumination of the dish is shifted.
The �rst two e�ects, due to a change in w, should not be observed for an illumination o�set,
but the error in the (u; v) coordinate will be observed.

Consider a very large antenna with no blockage and an illumination taper which drops to
zero at the edge of the dish. In such a case, the full phase gradient described by Equation 1
will be seen in the voltage pattern, and the magnitude of the change in the (u; v) coordinate
will be the same as the illumination o�set on the dish; however, the geometry will be di�erent,
but more on that later. A simple simulation of a very large dish with zero illumination at the
dish edge produces a voltage pattern with the expected phase gradient corresponding exactly
to the illumination o�set. This basically insures that our software is working as expected.

We can look at things more analytically if the only e�ect upon the voltage pattern is a
phase gradient. A single visibility V1;2(u) is related to the sky brightness distribution I(x) and
the far �eld voltage patterns A1(x) and A2(x) as

V1;2(u) =

Z
A1(x)A

�

2(x)I(x)e
�2�iu�xdx: (2)

Consider that the voltage patterns for antennas 1 and 2 are identical in amplitude and just
have a gradient for the phase:

A1(x) = A0e
2�ig1�x: (3)

Then the calculated visibility is given by

V1;2(u) =

Z
A2
0(x)I(x)e

�2�i(u�(g1�g2))�xdx; (4)
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where A2
0(x) is now the primary beam. This shows that the baseline vector u needs to be

adjusted by the voltage pattern's phase gradients as g1 � g2.
Now, in the case of the ALMA dishes, we have been assuming a Gaussian taper of 10 dB

in power at the edge of the dish. Additionally, we have four feed legs each 0.08 m across,
and a central blockage of 0.7 m (see Figure 3). The net e�ect of all this is to result in a
weighted mean position of the dish surface which is not as far removed from the dish center
as the o�set center of illumination. Additionally, this asymmetrically illuminated aperture will
result in more complicated phase errors and some amplitude errors in the voltage pattern (see
Figure 4). These facts combine to give two implications:

� the phase gradient in the voltage pattern will be less than that expected by the illumi-
nation o�set

� in addition to the simple phase gradient, there will be more complicated deviations in the
voltage pattern characterized by both amplitude deviations and phase deviations which
depart from a simple gradient.

Again, using aperture illumination simulations to calculate the voltage pattern, we have quan-
ti�ed these e�ects. First, we found that for a typical case, the magnitude of the phase gradient
for the 10 dB taper ALMA antennas was only 60% of the phase gradient implied by the 10%
radius (ie, 0.6 m) o�set in the illumination. Second, we found that after �tting and removing
the phase gradient from the voltage pattern, the deviation from a \perfect" voltage pattern
unhampered by illumination o�sets was reduced to only 18% of the pre-�t value. Naively, this
indicates that the majority of the e�ects of the illumination o�set on imaging can be removed
simply by measuring the phase gradients in each antenna's voltage pattern, converting it into
a deviation from the antenna position which varies with parallactic angle, and correcting the
(u; v) coordinates accordingly.

4 Calculating and Applying the Baseline Correction

The baseline correction due to the illumination o�set should be constant with time. If it is
not, we have yet another short term calibratable e�ect to worry about, but it appears that
this e�ect is fairly easy to calculate. The pointing error is measured by performing a \�ve
point" procedure (or one of its more modern equivalents, such as moving the dish in a circle
centered on the pointing source) and comparing the amplitudes at the supposed half-power
positions with the central pointing. Similarly, the phase gradient in the voltage pattern can be
calculated by performing a �ve point interferometrically and solving for the phases at the �ve
positions and �tting a plane to the phases. Formally, only three positions are needed, as we are
just solving for the two coordinates of an o�set, but �ve positions will help reduce systematic
errors.

4.1 Noise and Atmospheric Phase Errors

Thermal noise and atmospheric phase uctuations will both limit the accuracy of the phases
which we measure in a �ve point procedure. But before we calculate limits on the errors due to
noise and atmosphere, we need to understand how accurately we need to determine the phase
gradient. After removing the phase gradient, the simulated voltage patterns have a residual
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freq �V =
p
N � 2 typical cal typical phase

GHz in 0.25s Flux error in 0.25s
[Jy] [Jy] [deg]

115 0.0046 10.0 0.02
230 0.0052 5.95 0.06
345 0.012 4.39 0.14
415 0.016 3.82 0.24
650 0.043 2.73 0.90
850 0.120 2.23 3.0

Table 1: Phase errors expected due to thermal noise in 0.25 s. Phase errors at the half power
point will be a factor of 2 larger.

phase of 0.5 deg rms for our 10dB taper case. The phase at the half power point in the gradient
direction is about 10 deg. Hence, measurements with an accuracy of about 0.5 deg, or a bit
better, are required.

From a thermal noise perspective, this is not a problem. Table 1 shows the expected thermal
noise in the gain (ie, �V =

p
N � 2, where �V is the noise in a single visibility in 0.25 second and

N is the number of antennas, taken to be 60), the expected ux of the calibrator (assuming
a spectrum of ��0:75), and the equivalent phase error given the thermal noise. A calibrator
ux of 10 Jy has been chosen at 115 GHz, assuming we are using the brightest quasar in
the sky. (There is no reason to use a source particularly close to a target source since the
calibration should be applicable to all observations for a long time.) One 0.25 s of integration
will be suÆcient to adequately determine the voltage pattern's phase at frequencies up to about
400 GHz. Higher frequencies will require more integration to achieve the desired accuracy in
the phase gradient measurement.

Atmospheric phase errors will be a much tougher problem. Typical fast switching will have
residual phase errors of the order 10-20 degrees, which is much too large. The \�ve-point"
procedure will have smaller residual atmospheric phase errors, as there won't be much dead
time between using the central pointing as a phase calibrator and measuring the phase on
one of the o� positions. The fastest way to proceed would be to do some sort of on-the-y
interferometric observing, linearly crossing over the bright source in something like a �gure
\8".

Assuming this calibration procedure is performed during the best tenth percentile of the
phase stability conditions, and that 0.5 s elapses between the observation of one of the half
power points and the calibration source straight on, we can use the interferometer site testing
data to estimate the phase errors (see Table 2). The atmospheric phase errors are higher
than acceptable for all frequencies. Faster on-the-y slewing will improve the atmospheric
phase errors, but if the time on the central pointing keeps on decreasing, we won't detect
the point source with suÆcient accuracy to calibrate the phases (Table 1). An optimum
strategy would probably equalize the thermal and atmospheric noises, resulting in faster scans
at low frequencies and slower scans at higher frequencies (this counterintuitive result comes
about because the noise-frequency dependence is steeper than the atmospheric phase-frequency
dependence due to the falling calibrator spectrum). In the event that the combined thermal
and atmospheric phase errors are larger than the desired 0.5 deg level, multiple scans will be
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freq Atmospheric Phase
GHz error [deg, over 0.5s]

115 0.80
230 1.61
345 2.41
415 2.90
650 4.54
850 5.93

Table 2: Atmospheric phase errors resulting from an \on-the-y" observing strategy with 0.5 s
between the observation at the half-power point and the beam center. At the beam center, the
voltage pattern should have no phase errors, and so can be used as a phase calibrator. Phase
dispersion in the submillimeter has not been factored in.

required to calculate the voltage pattern phases with suÆcient accuracy. The atmospheric
phases should average down, especially if we reverse the direction of the scans to eliminate any
systematic component in the residual phase errors.

The analysis above assumes that the physical baselines between antennas have been very
well determined. If they have not, there will be some confusion between phase gradients caused
by errors in the physical baselines and phase gradients resulting from the illumination o�set.
Such an ambiguity can be removed by observing over a wide range of parallactic angles, as
the projected physical baseline depends upon hour angle and declination, but not parallactic
angle, and the e�ective illumination baseline depends upon parallactic angle.

4.2 Application Algorithm

The software for applying the (u; v) correction to the data is pretty straightforward. We build
up a calibration table from the �ts in the image plane to the phase gradients for each antenna's
voltage pattern. These phase gradients then scale to give the (u; v) o�set which should be
used (see Equation 4). Finally, the (u; v) o�sets need to be rotated by the parallactic angle
and added to (or subtracted from, for the second antenna in a baseline) each baseline's (u; v)
coordinate. The di�erent rotations of the projected baseline and the incremental (u; v) o�set
are demonstrated in Figure 5

To test the accuracy of the algorithm, we simulated voltage patterns whose defects could be
essentially completely described by the phase gradient: we made a 24 m dish with a Gaussian
taper down to 100 dB at the edge, so we were not concerned at all by edge e�ects. Then we
simulated data for an o�-center point source as observed through the surface error simulation
machinery (ie, di�erent voltage patterns for each antenna). We then adjusted the (u; v) coor-
dinates as instructed by the voltage patterns and resimulated the o�-center point source with
software which simply took the DFT without concern for the various complex voltage patterns.
The phases of the visibilities calculated with the voltage patterns and the shifted (u; v) coor-
dinates agreed to less than 0.01 degrees. This level of disagreement is probably due to small
errors in the HGEOM procedure which rotates the voltage patterns, or the pixellation in the
aperture illumination and voltage pattern construction process. Anyway, the procedure works
very well for the case in which it should work perfectly. With this algorithm in hand, we are
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Figure 5: An example of how an E-W baseline rotates against the sky, and how the incremental
baseline correction rotates with the parallactic angle.

12



ready to move on to correct more realistic illumination tapers (ie, 10 dB at the dish edge), and
also simulated data which is a�ected by pointing errors, surface errors, and the illumination
o�set.

5 Imaging Simulations

To gauge the level at which the (u; v) correction scheme will work, we have performed nu-
merical imaging simulations of the e�ect of illumination o�sets and their correction on ALMA
mosaicing. As the o�set speci�cation is independent of frequency, we are free to simulate at
any frequency.

5.1 Simulation Details

The details of the imaging simulations include:

� simulations were performed in SDE.

� homogeneous array mosaics were performed. Total power was measured by 4 antennas
spending four times as much time on the source as the interferometer. The total power
extended over a larger region than the interferometric observations covered. No ACA
(ALMA Compact Array) data was added to the regular ALMA interferometric and total
power data.

� A 3 x 3 pointing mosaic of the CLUSTER model image from the ACA simulation cam-
paign was used for this study. The image was scaled such that a 3 x 3 pointing mosaic
would cover the model source at 115 GHz.

� no thermal noise, phase noise, pointing errors, or surface errors were included in the
simulated visibilities.

� illumination o�sets ranging from 0% to 20% of the dish radius, rms, were simulated.

� for each value of the illumination o�set, a separate voltage pattern was calculated for each
antenna. The voltage patterns were generated for a 12 m circular aperture, four feed legs
with blockage of 8 cm wide, blockage from a 75 cm secondary, no panel gaps, a 10dB
Gaussian illumination taper at the dish edge, and Gaussian o�set errors, centering the
tapered illumination o� from the primary's center (see Figure 3). The model apertures,
with zero phase errors, were Fourier transformed to yield the far �eld voltage pattern.

� Once the far �eld voltage patterns for each antenna were simulated for a given rms
illumination o�set, they were used to calculate visibility data on a baseline by baseline
basis. For a given baseline at a given time, the voltage patterns were regridded onto
the model brightness distribution's grid, rotated by the parallactic angle and shifted to
the pointing position; the second regridded voltage pattern is conjugated and they are
multiplied by each other to form the primary beam. The primary beam is multiplied by
the model brightness distribution, and the result is Fourier transformed onto the single
(u; v) coordinate appropriate to that baseline at that time. (An FFT is not eÆcient, as
only one baseline has this exact primary beam with this orientation, so a DFT is used.)
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� The (u; v) corrections were derived from the individual voltage patterns by �tting a plane
to the phase of the voltage pattern, considering all pixels above the half power point. No
errors (such as thermal noise or atmospheric phase errors) were considered in the gradient
�tting process, indicating that very good measurements have been performed here. This
should be the case if the illumination o�sets are indeed constant with time. The phase
gradients were converted into antenna-based (u; v) o�sets which were then rotated by
the parallactic angle and incremented pairwise to the nominal (u; v) coordinates for the
corrected simulations. These (u; v) increments were generally about half as large as the
simulated illumination o�sets when a 10dB taper was used, but essentially equal to the
illumination o�sets when a 100dB taper was used (ie, the e�ect on the voltage pattern
was entirely a phase shift, and the illumination pattern, dropping to zero before the edge
of the dish, was symmetric about the illumination o�set.

� Because of a problem relating to phase rotation which is still not understood, we could
not use the standard SDE simulation tools, which reference all visibility phases and
(u; v) coordinates to the center of the model image. Again using the 100dB taper case
as a debugging tool, we found that the correction worked perfectly (ie, visibility phases
were correctly reproduced down to the 0.01 degree level) for the central pointing (where
there were no phase or (u; v) rotations as the simulated interferometer phase center was
the same as the reference value of the image). However, none of our attempted phase
rotations could get the correction to work for the other pointings. We were able to make
a work around. Since everything worked when we were looking at the central pointing
(ie, aligned with the center or tangent point of the image), we used the SDE simulation
software to simulate a series of single pointing observations, with the single pointing
shifting to the di�erent mosaic pointings. We accomplished this by using HGEOM to
regrid the model image to be tangent to the celestial sphere at the location of each of
the 9 mosaic pointings, controlling the details of the pointings and transformations with
a shell script which ran HGEOM and the simulation program. After each pointing is
simulated, all the data are concatenated and the subsequent (u; v) o�set correction works
perfectly for the 100dB taper case, and very well (like 85%) for the 10dB taper case.

(When I �rst joined NRAO and the MMA project, I was told that Robert Braun had
attempted to perform mosaic simulations by using HGEOM to shift the model image and
then use a single pointing simulation and concatenating the single pointing visibility sets.
However, this approach was limited by errors in the regridding to about 200:1 dynamic
range, and SDE was written in part to address the need for high quality simulations for
the MMA. I checked my HGEOM+single pointing simulation loop with no illumination
o�sets and no other errors against the standard SDE mosaic simulation code, and found
that there were no substantial di�erences, so imaging limitations seen in the simulations
can be attributed to the illumination o�set or the deconvolution method, but not to the
simulation method. The fact that these simulations oversampled the synthesized beam
with almost 6 pixels across probably greatly reduced the level of the regridding errors in
HGEOM, so we did not see the problem reported in the past.)

� The simulated data were imaged with the MEM-based mosaic program (Cornwell, 1988).
An e�ective primary beam for mosaic reconstruction was formed by averaging all of
the baseline primary beams (Holdaway, 1992), calculated from the individual voltage
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patterns:

PB(x) =
1

n(n� 1)=2

X
i>j

ABS(V Pi(x)V P
�

j (x)): (5)

Furthermore, the e�ective primary beam was azimuthally averaged to give a single radial
pro�le for the beam. A small reconstruction error was made here due to the asymmetric
feed leg side lobes and second order e�ects due to the illumination o�set's asymmetric
illumination.

� The success of the image reconstructions was gauged with the image plane �delity (Corn-
well, Holdaway, and Uson, 1994; J. Pety, F. Gueth and S. Guilloteau, 2001), and the
Fourier plane �delity (J. Pety, F. Gueth and S. Guilloteau, 2001).

5.2 Simulation Results

The image plane �delities (broken up by pixel brightness) and Fourier plane �delities (broken
up by range in the (u; v) plane) are plotted as a function of the illumination o�set as a fraction
of the radius for mosaic images made from uncorrected and corrected data in Figures 6 and 7.

The Fourier plane and image plane �delities bear some investigation, for they are rich and
strange to say the least.

In the Fourier plane, the image �delity of the uncorrected images is roughly inversely
proportional to the fractional o�set (see below). After applying the correction to data a�ected
by the illumination o�set, the resulting images are essentially of the same quality as the case
with no illumination o�set. In other words, to �rst order, the correction scheme works perfectly.

However, if we look closely at the simulation results (often a dangerous thing), we see that
sometimes the corrected images are actually better then the zero o�set (ie, error free) case.
Around o�sets of 5% and on baselines less than 37 m, we see a modest increase in image quality
after the correction has been applied. How can this be, that the �x improves the images to
be better than if there were no errors? Then, as expected, the quality of the �x gradually
decays for the larger o�sets. (Remember, the fact that the illumination taper doesn't fall
to zero at the dish edge results in an asymmetric illumination about the illumination center,
which then results in voltage pattern errors which are mostly, but not entirely described by a
phase gradient. Those non-gradient voltage pattern errors increase with larger o�sets, so it is
expected that the method would begin to break down for larger o�sets.)

In the image plane, the results appear more puzzling. The uncorrected image plane �delities
decrease with illumination o�set as expected (except around an 0.05 fractional o�set clipping
for pixels brighter than the 10% level, where a bump in the image �delity is observed; that bump
is not really understood). However, the image �delity for the corrected images increases with
the illumination o�set. The �rst paradox is that the corrected images show Fourier �delities
which generally decline with o�set as expected, while the image plane �delities for the corrected
images increase with o�set. How can this be? It seems that the Fourier plane and the image
plane should mirror each other here. This paradox is resolved by the fact that the Fourier plane
�delity looks at the entire image, while the image plane �delity is only looking at on-source
pixels. Apparently, the decline in the Fourier plane �delity is dominated by o�-source errors.
The slight rise in Fourier plane �delity is probably explained below in the image plane �delity
explanation.
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The second paradox in the image plane �delity results is the increase in the �delity with
illumination o�set for the corrected images. The increase is very modest for the faintest pixels,
but about 50% for the brightest pixels. What is going on? I think I can explain it, but it is a
complicated story.

The voltage patterns were created from simulated aperture illumination patterns, which
included the feed legs. The feed legs result in asymmetrical side lobes which di�er from the
rotationally symmetric primary beam model by a fraction of a percent. These side lobes will
be systematic, as all antennas have the same feed leg structure. Hence, for the e�ects of the
feed legs, zero illumination error is a worst case. Now, as we increase the illumination o�set, we
get the phase gradient and other voltage pattern errors which occur at random angles. These
residual e�ects tend to wash out the systematic e�ects of the feed legs. The errors they make
are less systematic than the feed leg errors. Hence, the deviation between the mean primary
beam used in reconstruction and each baseline's primary beam will be less than in the zero
o�set case. This is a very small fractional error, and we can estimate its magnitude by the
increase in the image plane �delity for the brightest pixels, namely on the order of 0.2%. This
is the same order of magnitude of the change in the primary beam caused by the feed legs.

Typically, the dynamic range of an image (not reported in these simulations) is much higher
than the on-source image �delity. For an imaging process such as mosaicing, the on-source
errors are due in large part to things like errors in the primary beam model or pointing errors,
where di�erent data on a given pixel disagree and they average out to a pixel value which is
in error. The error is not localized to that pixel, however, but gets scattered across the entire
image like the side lobes of the synthesized beam. As the synthesized beam side lobe level is
typically a few percent, the dynamic range, limited by o�-source errors, is typically one to two
orders of magnitude higher than image �delity, which is limited by on-source errors.

The brighter pixels will have errors which are dominated by the localized on-pixel error, in
this case due to the deconvolution errors and the incorrectly modeled primary beam sidelobes
due to the feed legs in about equal parts. The fainter pixels will still have the low level of
error caused by the unmodeled primary beam sidelobes, but will also have larger errors due
to deconvolution errors and also errors scattered from the brighter pixels. Hence, we don't
see such a large increase in image �delity with illumination o�set for the weaker pixels of the
corrected images.

5.3 Oh Really? Prove It!

We limit our discussion here to the corrected images, which are the ones that show the para-
doxical behavior of improving with illumination o�set.

There are two more sets of simulations we could do to basically prove this point of view,
but the simulations take a very long time to complete, and I am quite tired of doing them.
Furthermore, the main points of this memo were to quantify the e�ects of an illumination
o�set on imaging and to show that there is an algorithm which will �x the problem, and those
objectives have been met.

One type of simulation which could clarify the increasing image quality of the corrected
images is to use a 2-D primary beam model for the mosaic reconstruction. Using a 2-D beam
model which included the details of the feed leg side lobes should result in somewhat improved
images. Speci�cally, for low illumination o�sets, the bright pixels (ie, cuto� of 3% and 10%)
would show much higher �delities, and would gradually decrease with increasing o�set, as the
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average details of the feed leg side lobes (and the average primary beam) became more and
more smoothed out by the random o�set errors and the detailed primary beam model became
less applicable. Meanwhile, at low pixel values (1% and 0.3%), the errors are already dominated
by other e�ects such as deconvolution errors. As a modest improvement is seen at these low
brightness pixels as the o�set increases and a 1-D primary beam model is used, only a modest
decrease in image �delity should be observed with increasing o�set if a 2-D primary beam
model were used.

The other type of simulation that could prove our view of the corrected images' �delities
is to simply perform the simulations using an aperture illumination which does not include
feed legs. This is simple, as it requires no additional software, just time. My assertion is that
without feed legs and their associated asymmetric side lobes which are not included in the 1-D
primary beam model, the image �delity of the corrected images would degrade slightly with
illumination o�set as the non-gradient phase and amplitude deviations in the voltage pattern
became larger and larger. Maybe this will get done some week when I am really bored.

5.4 Analysis of Errors in the Fourier Plane

We have investigated the Fourier plane �delity for the uncorrected images in detail to gain a
quantitative understanding of how the illumination o�set a�ects the reconstructed image. First,
we have converted the �delity into its reciprocal, or the fractional error in the Fourier plane.
Next, we hypothesize that there is a deconvolution error which is present in all simulations,
but masked by the illumination errors. The 0.0 illumination o�set case will show just the
deconvolution errors. So, subtracting this deconvolution error in quadrature from the errors
of the other simulations, we are left with a reduced error, something which may represent the
imaging error, viewed in the Fourier plane, caused by the illumination o�sets. Fitting a line to
the reduced error verses the o�set on a log-log graph indicates a power law relationship between
the o�set and the imaging error (see Figure 8). This exercise indicates that the imaging error
is very close to directly proportional to the fractional illumination o�set, or that image quality
is inversely related to the fractional illumination o�set.

6 Conclusions

� The illumination o�set results in errors which show up at all spatial frequencies except
those measured by total power observations. The errors are linear with the o�set magni-
tude, over the range of o�sets studied (0 to 20% of the dish radius).

� If left uncorrected, the illumination o�set of 0.6 m (10% radius) rms will limit the quality
of ALMA mosaics up to a frequency of about 500 GHz. This means it is more damaging
than pointing errors or surface errors up to frequencies of 500 GHz.

� The fact that the illumination o�set e�ect has never been seen on any existing interfer-
ometer underscores the subtlety of the e�ects we are concerned with in trying to justify
the need for the ACA (ALMA Compact Array). This is signi�cant in that it is a purely
interferometric e�ect, not a�ecting total power at all. (Often, it is argued that pointing
errors adversely a�ecting total power data will limit the quality of homogeneous array
observations.)
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� The phase gradients in the voltage pattern which result from the illumination o�set
correspond to antenna-based o�sets in the (u; v) plane which rotate like the parallactic
angle, and a correction of the (u; v) coordinates is algorithmically simple, computationally
fast, and results in excellent image reconstruction.

� In fact, when illumination o�sets are simulated and the correction is applied, the image
reconstruction is in many aspects superior to simulated reconstructions with no error.
This is apparently due to the residual amplitude and phase errors in the voltage pattern
helping to randomize the systematic side lobes caused by the feed legs.

� The phase gradient parameters for each antenna which are required for the correction
can be simply measured by studying the phase of a \�ve-point" pointing observation
performed interferometrically. Thermal noise and atmospheric phase noise will complicate
the measurement of the phase gradient at higher frequencies (ie, above 500 GHz), but
these sources of measurement error will average down for many repeated measurements.
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Figure 6: Image plane �delity as a function of illumination o�set as a fraction of the dish
radius, for images made from corrected and uncorrected data.
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Figure 7: Fourier plane �delity as a function of illumination o�set as a fraction of the dish
radius, for images made from corrected and uncorrected data.

20



Figure 8: Fourier plane �delity as a function of illumination o�set as a fraction of the dish
radius, for images made from corrected and uncorrected data.
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