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1 Abstract/Introduction 
 
In this report a mm wave optics prototype for an Atacama Large Millimeter Array (ALMA) receiver 
cartridge is discussed. Mainly the ALMA frequency band 9 (602-720 GHz) is considered. However the 
same design approach is applicable to the receiver optics of any other ALMA bands. 
The high frequency cartridges (bands 7-10) have been decided to have no intermediate optics between 
the telescope secondary mirror and the cartridge cold optics. (See notes of Tucson optics meeting). 
Consequently, in the optical design of band 9 cartridge full signal path with all focusing elements are 
considered as free design parameters. 
In this report a concept of choosing and optimizing these parameters is discussed. The design starts 
from an optimal corrugated and diagonal horn field representation. A possibility of distortion 
compensation by a pair of ellipsoidal mirrors is discussed. A concept of frequency independent 
radiation coupling between the horn and the Cassegrain telescope system is presented. An expression 
for parameters of two elliptical mirrors giving rise to frequency independent matching of the horn to 
the telescope is given. 
A practical corrugated horn for signal path of mixer and a practical diagonal horn for local oscillator 
(LO) part of mixer are proposed. Based on the horn and the ALMA prototype antenna design a two-
mirror layout for ALMA band 9 is proposed. 
The alignment accuracy of optical components within the cartridge is considered. The alignment 
accuracy between the cartridge and the secondary mirror is also considered.  
 

2 Design concept 
In this part a few theoretical facts, used in the following practical design, are discussed. 

2.1  Corrugated and diagonal horn representation 
 
The essential part of the quasi-optical design is the feeds. The corrugated horn has been shown to have 
a very good Gaussian beam over at least 1.5:1 frequency range. The possibility of machining of these 
horns has been shown for frequencies at least up to 1 THz. The coupling efficiency to the zero order 
Gaussian beam can exceed 98 % for this type of horn. That is why we will use it as feed in the signal 
path of band 9. 



2 

 Throughout this report we will be using the following expression for the electrical field distribution 
over the horn aperture: 
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where r  is radius over the horn aperture, a is the radius of horn aperture and hR is the horn slant 
length. We do not consider the cross polarization in this representation, so the formula is given for 
main polarization. Expression (1) is slightly different from the one given in [1]. It was modified for 
normalization purpose such as the beam coupling given by: 
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is equal to 1 when chab EEE == . The coupling between the horn and the fundamental Gaussian 

beam is then simply given by (2) where Gaussian beam distribution is used for aE  and chE is used for 

bE . In this design we will use the fact that the radius of curvature of the beam in the horn aperture is 
very close to horn slant length. It can be found that Gaussian beam radius at the corrugated horn 
aperture should be aw 644.0=  (for aperture illumination taper 8.6 dB). Given this condition the 
optimum Gaussian beam will have a waist size 0w and distance from horn aperture (towards horn 
apex) z are given in following expressions: 
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More than 99% of power in the Gaussian beam with parameters given in (3) and (4) is coupled into the 
corrugated horn. For the geometrical optics limit ( 0→λ  in (4)) we find that geometrical optics image 
is located in the horn apex. This fact will be used for building an optical system for band 9 using 
geometrical optics.  

2.1.1 Equivalent diagonal horn 
The band 9 mixers will use a quasi-optical LO injection. We propose to use the diagonal horn as a feed 
for the LO source. There are several reasons for this choice: the antenna beam pattern of such a horn is 
reasonably good, the optimum Gaussian beam coupling for this type of horn can be as high as 84 % and 
– quite important – a diagonal horn is much easier to produce than a corrugated horn. The overall 
coupling between optimum corrugated horn and optimum diagonal horn will be about 82 % that is 
enough to efficiently couple LO signal in a mixer. 
The electrical field in the aperture plane of a diagonal horn is described by following equations: 
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where IIE is the co-polar component (along axis v), ⊥E is the cross-polar component, a is aperture 

size, hR is horn slant length, and x̂ , ŷ are orts of coordinate system as shown in Figure 2.1. 
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Figure 2.1 Diagonal horn geometry. 

An optimum Gaussian beam coupling of ~ 84 % to this type of horn is achieved when the fundamental 
mode beam radius aw ⋅= 43.0 . The beam radius of curvature in this case is also equal to hR . The 
waist position and size can be defined by the same set of equations (3) and (4).  
As it will be shown in sections 2.2, 0 it is especially advantageous if corrugated and diagonal horns to 
match has the same optimal fundamental mode beam waist sizes and positions. This can be achieved if 
the diagonal horn size da is related to the corrugated horn radius ca as cd aa ⋅= 5.1  and slant lengths 
of both radiators are equal. This symmetry allows to achieve frequency independent coupling and to 
avoid beam distortions when using two identical elliptical mirrors to couple one horn to another. 

2.2 Compensation of distortion in pair of elliptical mirrors 
Cold reflective optics will be used to match the telescope beam to the mixer horn. Since the telescope 
beam coming from the secondary and the horn beam have a different F-ratios (in geometrical optics 
limit) and mixer can not be mounted in the focal plane at least one elliptical mirror is required for 
matching. A Gaussian beam telescope is often used for frequency independent matching. This type of 
system requires at least two optical elements. The telescope secondary mirror can be used as the first 
optical element (NRAO optical design proposal) but to allow more freedom in designing and to enable 
different matching scheme (see Section 2.3) we consider here a system of two elliptical mirrors 
following between telescope focal plane and mixer horn. The beam distortion produced by two mirrors 
is analysed in this section in geometrical optics limit. 
The layout of such a system is presented in Figure 2.2. This layout is used for matching scheme that is 
described in Section 2.3. 
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Figure 2.2 Optical layout with two elliptical mirrors and some and parameters (see text for 
details). Chief ray is given by blue solid line, deflected ray is given by red dashed line. 
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Two elliptical mirrors M1 and M2 with focal points fp1, fp2 and fp3, fp4 respectively are arranged in 
such a way that fp2 coincides with fp3. Telescope focal plane is located at fp1. Mixer horn is located at 
fp4. The chief ray is shown by bold solid line. Distances ( 1R , 2R , 3R , 4R ) are usually defined in 
optical train calculations and are chosen for optimal matching. Two bending angles ( 1α , 2α ) are also 
required to define an ellipse shape. These two angles are usually chosen as small as possible in order to 
minimize a distortion ( distL ) and cross-polarization ( cpL ) loss in the system. This loss for fundamental 
Gaussian beam mode can be estimated using following equations [1, 2]: 
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where w is a Gaussian beam radius at the mirror, α is a bending angle and f is the focal distance of a 
mirror. In the worst case the losses from two mirrors sum up. However for some configurations (like 
one shown in Figure 2.2) two mirrors can compensate each other. From (8), (9) it is seen, that one can 
expect full compensation if two mirrors are identical and beam radii are the same.  
In order to investigate the distortion compensation we consider the angle magnification of the system in 
geometrical optics limit. This magnification Μ for small angles is given by:  
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where θ and β are output and input angles of the system as shown in Figure 2.2. For the chief ray this 

magnification is simply multiplication of magnifications of mirrors: 210 Μ⋅Μ=Μ , where 
121 RR=Μ  and 342 RR=Μ . Exact expression for (10) can be derived taking into account 

geometrical shape of ellipses given by initial parameters: 1R , 2R , 3R , 4R , 1α , 2α . After algebraic 
transformations, which we will not present here, it can be shown that Μ is only function of 
( )βαα ,2,1,2,1 ΜΜΜ . Furthermore, it can be shown, that if 1α and 2α are related by the 

following expression [3]: 
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Μ becomes a function of ( )β,0ΜΜ  and the magnification deviation ( ) 00 , Μ−ΜΜ β  is 

minimized. Distortion becomes also symmetrical with respect to the chief ray i.e. 
( ) ( )ββ −ΜΜ=ΜΜ ,, 00  for all realizable input angles. 

For the special case of 10 =Μ the system magnification Μ becomes independent of input angle β  
and 21 αα = . This case represents that it is possible to match two similar radiators with two elliptical 
mirrors with the same parameters regardless of values for bending angles 21 αα = . Distortion in this 
mirror pair appears to be compensated for all bending angles. For this purpose we aim for having the 
same horns on a LO oscillator last stage and a mixer. 
In the case of the band 9 signal path 0Μ is not equal to unity.  However, if ellipses bending angles are 
related by equation (11) the distortions are minimized and output beam becomes symmetrical. This fact 
is illustrated in Figure 2.3, where the normalized magnification ( ) ( )21,2,1,2,1 Μ⋅ΜΜΜΜ βαα  
is plotted with respect to the input angle β  and bending angle 1α provided that bending angle 2α is 

chosen to be for 301 =α optimal using equation (11). One can see that for the optimum input angle 
of 30° the distortions are minimized, beam is symmetrical and magnification errors are minimized to 
1 % for input angles of ±7 °. The beam contained by these input angles carries > 99 % of fundamental 
Gaussian mode power for F/#8 input beam in 600-720 GHz band. Magnifications 1Μ and 2Μ are 
taken from proposed layout in section 3.2. 



5 

-10 -5 0 5 10
Input Angle [Deg]

20

25

30

35

40

]ge
D[ elgna gnidneb espill

E

  

-10 -5 0 5 10
Input angle [Deg]

100

100.5

101

101.5

102]
%[ noitacifinga

m dezila
mro

N

 
   a)      b) 

Figure 2.3 Normalized magnification of two-mirror system with respect to input angle and 
bending angle of the first mirror. a) Contour plot, space between contours is 0.5 %. 100 % 
Contour is omitted. Red color indicates values >100.5 %, blue color shows values <99.5 %. b) 
Cross section of the contour plot for 1α = 30° (optimum angle) 

The above results are obtained for geometrical optics limit. The same property of distortion 
compensation should be valid for fundamental Gaussian mode distortion. It means that higher order 
modes launched by the first mirror are partly coupled back to the fundamental Gaussian mode at the 
second mirror. For calculation of distortion loss we can use equation (8) for each mirror and subtract 
the results, substituting beam radiuses taken from an optical train calculation: 

 
( ) ( )

2
2

22
2

2
1

22
1

8
2tan

8
1tan

f
w

f
wLdist ⋅

−
⋅

=
αα

.     (12) 

 
The loss given by equation (12) appears to be fully minimized if relation (11) is used for angles and 
frequency is tending to infinity. A correction appears to be necessary for lower frequency because 
beam sizes become frequency dependent.  
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   a)      b) 

Figure 2.4 Losses due to distortion in pair of elliptical mirrors (a)). Distance between contours is 
0.02 %. White area corresponds to losses less than 0.02 %. Optimal bending angle 1α vs. 
frequency when 2α is kept constant. 2α is calculated from (11) for  1α =30°. 
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Figure 2.5 Cross-polarization loss in two-mirror system provided the correct choice of ellipses 
bending angles and focal distances. 
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Figure 2.6 Optical train layout. Not in scale. 

The result of calculation of losses for proposed two-mirror system is given in Figure 2.4 a). One can 
see that for each frequency the relation between bending angles becomes slightly different. The 
optimum angle is shown in Figure 2.4 b) compared to the geometrical limit optimum angle shown by 
dashed line. The cross-polarization loss for the case of compensated lens system is shown in Figure 2.5 
The choice of final bending angles must be verified by using full fundamental beam mode propagation 
through the system. 
As it appear from the similarity of equations (8) and (9), the cross-polarization losses of these mirrors 
are also compensated. The accuracy of the geometrical optics approach is increased if mirrors are in far 
field of correspondent beam waists. 
The equation similar to (11) can be derived for systems with more mirrors and, therefore by proper 
choice of bending angles distortion and cross-polarization introduced by a feed offset can be fully or 
partially compensated.  
The distortion compensation approach is being verified by propagating the fundamental Gaussian mode 
through various mirror systems in the framework of HIFI project. Preliminary results show good 
agreement. 

2.3 Frequency independent coupling between horn and telescope 
beam 

The optical train layout is shown in Figure 2.6. This is analogous to the layout shown in Figure 2.2. 
Two elliptical mirrors M1, M2 are used to match the beam from a telescope secondary mirror to a horn. 
We will discuss here the choice of mirror parameters (R1, R2, R3 and R4) for providing frequency 
independent coupling between telescope and mixer. 
As it was discussed in section 2.1 the optimal fundamental Gaussian mode beam should have the radius 
of curvature equal to horn slant and at the same time it must have beam radius aRa 644.0=  where 
a  is horn radius. In order to achieve that we use the known properties of an optical system. If the 
system is arranged in such a way, that it reimages the pupil (in our case the secondary mirror) onto the 
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horn aperture with the required beam size and, at the same time, it reimages the focal point into the 
horn apex then beam radius of curvature and beam radius are independent on frequency. That allows to 
use geometrical optics relations to calculate main parameters of the system. 
Above conditions can be satisfied by system of three mirrors. Two mirrors can determine the 
magnification of the system and the third mirror can be used as a field mirror, specifying the pupil 
image position at the aperture of the horn. However, for specific set of parameters field mirror is not 
necessary. 
It can be shown, that based on two free parameters 1R , 4R the other parameters of system can be 
calculated using following expressions:  
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where K  is the system angle magnification, L is the horn length, 2,1 ff  are mirror focal distances. 
All other parameters are clear from Figure 2.6.  
The beam radius at the horn aperture Ra  can be adjusted to realize different edge illumination of 
telescope secondary mirror. The following expression can be to calculate Ra from edge taper Te (dB) 
and horn radius a : 

  TeaRa ⋅= 2185.0 .      (14) 
A fundamental mode Gaussian beam propagation trough the system calculated by using (13) is shown 
in Figure 2.7. Gaussian beams are shown for w1  and w5.2 beam radii, input and output distances 
( 1R , 4R ) Mirrors should pass w5 diameter beam in order to reduce truncation losses. The 
calculation was done for lowest band frequency 600 GHz assuming that 1001 =R mm, 

704 =R  mm and horn with parameters, described later in section 3.1. 
The output waist position and size of this two-mirror system can be calculated using standard Gaussian 
optics formulae. As soon as a dependence of output beam waist position and size from frequency is 
known, equations (2), (3), (4) can be used to calculate final coupling between telescope and horn. 
Result of such calculation is presented in Figure 2.8 by solid line. The coupling appears to be frequency 
independent. The coupling for an equivalent Gaussian beam telescope system is shown in the same 
picture by the dashed line. It appears to be frequency dependent. 
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Figure 2.7 Optical train for a practical system. Gaussian beam contours for w and w5.2 radius 
are indicated as well as geometrical optics beam. Calculations were made for frequency 600 GHz 
and edge taper of 12 dB. 
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Figure 2.8 Optimized (solid line) and Gaussian beam telescope (dashed line) coupling between 
fundamental Gaussian mode beam illuminating the telescope secondary at 12 dB edge taper and 
a corrugated horn through two-mirror optical system. 

3 Proposed layout 
In this section we describe details of proposed two-mirror optical system. The detailed drawing of 
corrugated horn and parameters of an equivalent diagonal horn. 

3.1 ALMA band 9 corrugated and diagonal horn design 
The optimum corrugated horn design for ALMA band 9 is presented in Figure 3.1. This horn has the 
shortest slant length possible without degrading its antenna beam pattern. It allows to decrease amount 
of corrugations and makes the production easy. The optical parameters of this horn are: 
 
 Slant length:  12.867 mm 
 Aperture radius ca : 2.1095 mm 
 
The equivalent diagonal horn design is presented in Figure 3.2. As it was discussed in previous 
sections, these horns require the same waist size and position for optimum coupling to fundamental 
Gaussian beam mode. Optical parameters of this diagonal horn are:  
 
 Slant length:  12.867 mm 
 Aperture size ra :  3.16 mm 
 
For preliminary mixer design, an equivalent diagonal horn will be produced because of long delivery 
time of corrugated horns. We propose, that local oscillator (LO) output beam is also formed by a 
diagonal horn shown in Figure 3.2. This allows to minimize the production cost without decreasing 
significantly the coupling between local oscillator and mixer. In addition, if two the same diagonal 
horns are used for transmitting the LO signal and for receiving it the symmetrical mirror system can be 
used in-between and coupling could be even better than one predicted by Gaussian beam analysis. 

 
Figure 3.1 Optimum corrugated horn for 600-720 GHz 
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Figure 3.2 Diagonal horn, equivalent to corrugated horn shown in Figure 3.1 

3.2 ALMA band 9 signal path optical layout 
The proposed layout drawing is shown in Figure 3.3. The input signal comes from the top. The bending 
angle of the first ellipse is chosen to be 30°. One should note that if angles of two ellipses are related as 
described in section 2.2, the distortion appears to be compensated for any realizable bending angle of 
first mirror. Therefore this angle was chosen just to give enough space for dewar wall and radiation 
shields. This space is of order of 50 mm. The parameters of this design were calculated for 12 dB 
illumination of secondary mirror taking into account corrugated horn design described in previous 
session. Parameters of optical train are: 
 

R1=100 mm, R2= 34.45 mm, R3= 47.88 mm, R4=70 mm, f1=25.62, f2=28.43 
 
The loss in whole design is frequency independent and is less than 1%. Distortions and cross-
polarization in two mirrors compensate so the associated loss should be less than 0.02 % for central 
frequency. This number should be still verified by a more accurate model. This design is physically 
smaller than a Gaussian beam telescope between the same horn and telescope focal plane. 
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Figure 3.3 Proposed signal path layout calculated for lower band frequency (600 GHz). Input 
signal comes from the top. The small tilt angle due to cartridge offset in the telescope focal plane 
is not shown. Dashed lines indicate ellipses main axes. 
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4 Mirror alignment tolerances 
In this section an individual mirror and horn alignment tolerances are considered. Some mirror offsets 
can be compensated or by refocusing (shift in the telescope secondary mirror) or by calibrating 
pointing offsets. Some facts that are stated in [4] were used. 
Let us consider the offset of mirror M2 in the optical train while all other elements are kept in the same 
absolute position. The output waist position can be calculated by using ray matrices of elements. The 
dependence of optical coupling vs. mirror offset is shown in Figure 4.1. The tolerances for 1% of 
efficiency loss are maximal for highest frequency of 720 GHz and correspond to the range of –1.63 … 
1.88 mm. 
However, if one allow for a in change the distance between focal plane and first mirror (it can be 
achieved by adjustment of the telescope secondary mirror) the position tolerances of this mirror offset 
becomes much less critical: -2.3 … >3 (or even >14) mm. This is illustrated by Figure 4.2. The same 
considerations can be applied to all relative movements making tolerances less critical. 
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Figure 4.1 Coupling through the system vs. mirror M2 offset for different frequencies. Solid blue 
line corresponds to 600 GHz, dashed red line corresponds to 720 GHz, and dotted green line 
corresponds to 660 GHz.  
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Figure 4.2 Optical coupling versus telescope focal plane offset and mirror M2 offset. Distance 
between contours is 1%. Central white area corresponds to 100%. Additional truncation is not 
taken into account. 
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Figure 4.3 Local coordinate system used for mirror tolerance calculations. X- and z-axes are in 
the plane of the beams. Z-axis is perpendicular to the mirror surface.  

For calculating of the actual alignment tolerances mirror bending angles should be taken in to account. 
Mirror offset can be described by shifts and rotations in three orthogonal axes as shown in Figure 4.3. 
The chief ray was propagated through the system and output waist offset due to movement of one 
mirror was calculated in the paraxial limit. Aberrations and distortions are not taken in to account in 
this calculation as an effect of second order. Results of calculations allowing for 1% of relative loss per 
degree of freedom are shown in table Table 1. The second column shows mirror/horn displacement 
when telescope secondary focus position is kept fixed. The third column shows the same tolerance 
provided that telescope can be defocused and focal plane offset is calibrated out. The fourth and fifth 
columns show optimized values and offsets. It can be seen that allowing for some adjustments makes 
some tolerances less strict. Most critical type of movement is therefore mirror rotations.  
 
 

Table 1 Alignment tolerances budget 

Misalignment type Offset (non 
compensated) 

Compensated 
offset 

Defocus (mm) Focal plane 
offset (mm) 

Mirror offsets 
Mirror M1 x-axis offset 0.067 mm 0.157 mm 0.366 -0.528 
Mirror M1 y-axis offset 0.058 mm 0.136 mm 0.366 -0.528 
Mirror M1 z-axis offset 0.185 mm 0.260 mm -1.19 0.252 
Mirror M2 x-axis offset 0.045 mm 0.075 mm 0.352 0.331 
Mirror M2 y-axis offset 0.041 mm 0.068 mm 0.352 0.331 
Mirror M2 z-axis offset 0.423 mm 0.575 mm -2.05 0.236 

Mirror rotations 
Mirror M1 x-axis rotation 0.037 ° 0.088 ° -0.303 -0.534 
Mirror M1 y-axis rotation 0.065 ° 0.153 ° -0.303 -0.534 
Mirror M1 z-axis rotation Inf Inf -- -- 
Mirror M2 x-axis rotation 0.028 ° 0.044 ° -0.31 0.3 
Mirror M2 y-axis rotation 0.051 ° 0.081 ° -0.31 0.3 
Mirror M2 z-axis rotation Inf Inf -- -- 

Horn offsets 
Horn lateral offset  0.093 mm 0.137 mm 0.341 0.269 
Offset along the beam 1.3 mm 1.3 mm 0.512 0 

Horn rotations 
Horn tilt 0.817  ° 1.11  ° 0.188 -0.231 
Rotation about beam axis 5.74  ° -- -- -- 
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5 Conclusions 
1) Proposed layout is frequency independent 
2) It is possible to compensate for cross-polar and distortion losses in two (in more than two mirrors) 

and attempt is made to implement this into this layout 
3) Alignment tolerances must be considered together with possibility of pointing offset and 

refocusing of the telescope. 
4) Proposed layout is physically smaller than Gaussian beam telescope 
5) The same idea of signal coupling can be applied to ALMA channels 6-10. 
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