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Abstract

We propose an amplitude calibration strategy for ALMA which attempts to
reach the 1 % precision for absolute calibration. Key points and major difficulties
are identified. Polarization is ignored in this first step. We first review the prop-
erties of possible calibration sources. Planets and specially giant planets satellites
are the preferred reference sources for flux calibration. Asteroids are too complex
for such a purpose, but are useful as e.g. targets for relative pointing & focus de-
termination. Stars are too weak. Quasars have to be used for various intermediate
steps: bandpass, pointing, focus, and relative amplitude calibration.

The amplitude calibration precision may be divided into 3 major items: abso-
lute flux scale, relative amplitude calibration (as function of time and antenna),
and bandpass (dependence on frequency). Absolute amplitude depends on receiver
gain and atmospheric opacity correction, and on pointing & focus control. The semi
transparent vane is found to be 3 to 10 times less sensitive to atmospheric parame-
ters than the dual-load calibration system. Accurate pointing & focus control can
be done within reasonably short time (1 minute or so). Relative amplitude calibra-
tion can be checked to 1% accuracy at mm wavelengths by observation of a nearby
quasar, but integration time considerations prevents reaching better than about
3% at submm wavelengths. Bandpass calibration, and specially the sideband ratio
determination, is the longest calibration procedure. Within 3 minutes, this can be
calibrated to 1% at mm wavelengths, but only to 3 % at submm frequencies. Based
on these considerations, we recommend 1) to further develop the semi-transparent
vane system, 2) to keep the 1 % accuracy goal at mm wavelengths, 3) to relax the
specification to 3 % in the submm domain, and 4) implement the coherent signal
from the subreflector for bandpass calibration purpose.

1 Introduction

Calibration for ALMA is a major topic since it is an image quality limiting factor. The
calibration problem has many facets:

• Phase calibration: phase errors will limit the image dynamic range
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• Bandpass calibration: bandpass errors can affect the determination of velocity
gradients, or line to continuum ratios.

• Relative amplitude calibration: relative errors will limit the dynamic range

• Absolute amplitude calibration: flux scale errors will limit the accuracy of the
determination of physical parameters. Absolute amplitude calibration can play
significant role in multi-wavelength analysis, or in the analysis of time variable
phenomena

• Primary beam calibration: correction for the primary beam attenuation is required
before scientific analysis.

• Polarization calibration: depending on the adopted observing scheme, amplitude
and phase errors can influence the polarization measurements.

The ALMA Scientific Advisory Committee has set an ambitious goal of 1% absolute
calibration accuracy for ALMA. A relative amplitude accuracy of 1% is needed for high
dynamic range images (up to 104 or so). Reaching the same absolute accuracy is even
more challenging. So far, “absolute” calibration is hardly ever performed. Instead, most
arrays (even at cm wavelengths) rely on so-called primary amplitude calibrators, which
have been measured in an absolute way once (or twice) and are assumed constant since
then. For example, the VLA uses 3C48 and 3C286 as primary calibrators. At mm
wavelengths, the primary calibrators are the solar system planets. However, they have
not yet been measured or modeled with better than 5 % accuracy. At sub-mm wave-
lengths, the situation is even worse. With careful cross-checks, the IRAM interferometer
currently achieves about 5 % accuracy at 3 mm, and 10 % at 1.3mm.

Hence, the 1% goal for ALMA is very challenging: this is beyond the precision of the
standard “chopper wheel” method [Yun et al. 1998], and has driven a number of studies
of alternate calibration schemes [Bock et al. 1998], [Mangum 2000], [Plambeck 2000].
However, before facing up these serious issues, one should realize that calibration time
may also become an important problem to reach such levels. In most cases, going from
5% to 1% typically implies 25 times longer calibration times.

This memo contains a study of the ALMA amplitude calibration scheme and the
accuracy achieved at both mm and submm wavelengths for ALMA. A review of our
knowledge on the calibration sources is presented in the first part. Based on the source
flux at different wavelength and ALMA sensitivity, we compute the integration time
needed, for a given accuracy, for each step in the calibration procedure: pointing, focus,
bandpass, amplitude and phase, and absolute amplitude calibration. Finally, a global
calibration scheme will be proposed.

2 The rules of the game

The main goal of calibration is to convert the raw correlation coefficient, as measured by
the correlator, into an accurate physical quantity. Many factors influence this conversion:
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1. The correlator quantization effects, which are fortunately stable and can be ana-
lytically derived

2. The receiver/electronic gain, which depends on frequency, and tuning parameters,
and even on time if the receiver is not stable enough.

3. The antenna gain, which can change if the antenna is mis-pointed, ill-focused, or
distorted by thermal effects. This antenna gain is not just a simple number, but
the whole beam pattern may matter for sufficiently extended sources.

4. Atmospheric transparency, which must be accounted for properly.

5. Decorrelation coefficients, which result either from electronic phase noise, or from
short (and medium) term atmospheric effects.

For a single-dish telescope, the last term plays no role. Proper focus and pointing
control can guarantee a stable beam, provided the main dish deformation do not exceed
some specified level. Atmospheric transparency correction becomes the most challenging
problem, and it is usually performed with the receiver gain calibration, because the
two problems do not easily separate. A direct absolute calibration relying on this
atmospheric correction and on proper antenna beam modeling is quite possible. There
is no stringent need to perform relative amplitude calibration to some reference flux
standard.

For current mm interferometers, knowledge of the effective decorrelation factor is
a serious issue. Hence, direct absolute calibration is not a standard practice at mm
interferometers. Rather, they all proceed by doing a relative amplitude calibration based
on regular observing of a nearby quasar, whose flux is bootstrapped to a reference flux
standard (planet or other source). As a side effect, control of the pointing and focus
if often relaxed, since first order effects for small sources are corrected by the relative
amplitude calibration. Such a procedure is appropriate only for small sources.

Given the higher goals for ALMA, we propose to attempt a direct absolute am-
plitude calibration as far as possible. Proper calibration will require several steps:

1. Receiver tuning: sideband gain ratio

2. Delay and Bandpass measurement (amplitude and phase frequency dependence)

3. Atmospheric transparency calibration, also called atmospheric amplitude calibra-
tion

4. Pointing and Focus checks

5. Relative amplitude calibration

6. Phase calibration, and decorrelation estimates

7. Absolute flux scale determination

The goal of that paper is to determine how these actions could best be performed and
what integration time they require. Once the time estimates are known, as well as their
dependency on the required calibration accuracy, an optimized breakdown of the error
budget can be given. In this paper, we use the following assumptions:
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1. The basic phase calibration cycle uses two observing sky frequencies, one for ob-
servation νobs, one for calibration νcal.

2. An independent amplitude calibration cycle also exists, but only uses the observing
sky frequency νobs.

3. An absolute calibration scale can ultimately be defined by using standard flux
reference sources, if needed. To reach the required accuracy may require observing
at two different frequencies, and use some a priori knowledge of the spectral index.

Small residual elevation dependence of the correlator output (due to improper atmo-
spheric modeling) may be calibrated out in our scheme. This will be mentioned when
relevant. We focus on amplitude calibration, and only mention phase calibration as
far as integration times are concerned. In this approach, a typical observation session
would be

SIDEBAND(obs)

DELAY(cal), DELAY(obs)

FINE_BANDPASS(cal), COARSE_BANDPASS(obs)

nf x (POINTING(cal), FOCUS(cal),

na x (AMPLITUDE(obs),

np (PHASE(cal), SOURCE(obs) )

)

)

) POINTING(cal), FOCUS(cal), FLUX(cal), FLUX(obs)

where cal and obs indicate the calibration frequency and observing frequency respec-
tively. POINTING and FOCUS are assumed to be checked on a similar timescale in the
above example, but this may not be true in all circumstances.

Astronomical Calibrators of various kinds are required in this approach (i.e. there
is no independent absolute metrology). The next section describes the properties of
relevant astronomical sources for this purpose.

3 Calibration Sources

3.1 Introduction

Planets and quasars are the main mm / submm calibration sources used in radioas-
tronomy. With the higher sensitivity of ALMA, other calibration sources like satellites,
asteroids and stars can also be used. We discuss in this section our knowledge of these
sources on several points : source list / sky distribution, size, flux and spectral index,
polarisation, variability / uncertainties. All these sources (except quasars) could be used
as primary or secondary flux calibrators, depending of their relative size versus the syn-
thesized beam (see Section 11). The quasars will not be used as flux calibrators, but as
amplitude calibrators.
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3.2 Planets and Satellites

Planets are intensively used as flux calibrators in the mm / submm range, because they
have strong and reasonably well known fluxes. Although the absolute fluxes are not
known with better than 5% accuracy, their time dependence is known much more accu-
rately. Moreover, our good knowledge of the radiative processes involved and their size,
allows independent modeling of the continuum brightness, which gives more confidence
to the flux values of these primary calibrators in radioastronomy.

The mm/submm continuum of the Giant planets are modeled to about 4-10 % ac-
curacy using a spherical radiative transfer code, and including collision induced ab-
sorption of the main compounds (H2, He, CH4) and ammonia far wing computation
[de Pater and Massie 1985] [Lellouch et al. 1985] [Moreno, 1998]. Note that Uranus is
the planet with the better observed/modeled mm/submm continuum, with uncertainties
< 5%. With similar atmospheric modeling, Titan’s mm/submm continuum is known
with the same level of accuracy [Paubert et al. 1984] [Gurwell 1995] [Hidayat 1997]. Fur-
thermore, polarization at mm/submm wavelengths is negligible for the giant planets and
Titan.

The planets and satellites which do not have thick atmosphere (Mars and Jovian’s
major satellites) can be modeled by a smooth isothermal dielectric sphere with dielectric
constant (ε) depending of the soil properties. ε can be accurately measured at cm wave-
length and knowing the frequency dependency, can be extrapolated to the mm/submm
range. These modeling have reached an accuracy of about 5% in modeling the Mars
mm/submm continuum [Rudy et al. 1987] [Rudy 1987], in agreement with absolute cal-
ibration measurements [Ulich 1981]. Near the planets limb, the flux is increasingly po-
larized (see Fresnel equations) but predictable. Since these planets / satellites will be
partially resolved by ALMA, the polarized region will have a larger influence on the mea-
sured flux and should be also taken into account for a better accuracy. Extension of the
Mars modeling to satellites and asteroids has been made [Mulheman and Berge 1991].

Planets have brightness temperatures between 70–200 K and their apparent sizes
are between 2 and 45′′. The major Jovian’s satellites and Titan have angular diame-
ter of ∼ 1′′ and brightness temperature between 70–100 K [Mulheman and Berge 1991]
[Gurwell 1995]. The averaged satellites flux at 230 GHz is ∼ 2.5 Jy.

The relatively large size of the planets and satellites make them easily resolved by
mm interferometers, which complicates their use as primary flux calibrators. Standard
practice is to bootstrap the flux of secondary calibrator (quasar or other small source)
using total power measurements in single-dish mode. This is inherently less sensitive
(by 2

√
Nant provided atmospheric noise and receiver gain variations and 1/f noise are

negligible) than interferometry techniques. Modeling the continuum visibilities of the
smallest planets (Uranus, Neptune and Mars) and satellites could allow to use them in
interferometric mode at mm wavelengths. Self calibration techniques based on planet
modeling have already been used to calibrate interferometric planetary observations
[de Pater and Massie 1985] [Gurwell 1995] [Moreno et al. , 2001]. Therefore, interfero-
metric observation of planets can be used to measure secondary calibrator fluxes, rather
than having to rely on single-dish techniques to do so, at the expense of some sensitivity
loss due to low visibilities on the longest baselines.
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3.3 Asteroids

They are many classes of asteroids (Near, Main belt, Trojan, ...), most of them are
located in the Main belt between 2–3 AU from the sun. At that distance the effective
temperature due to the sun is ∼ 175 K. The most interesting asteroids size for our
calibration purpose needs to be large enough to provide the strongest possible fluxes,
but not to big (<1′′), to remain unresolved as much as possible. The interesting size is ∼
0.1′′corresponding to asteroids diameters of 200 km at a geocentric distance of 2.5 AU.
The typical flux of these kind of asteroids is about 50 mJy at 230 GHz. There are about
60 asteroids included in this selection [Redman et al. 1995].

The radio wavelength observations of asteroids has been modeled in term of soil emis-
sivity properties. The effective emissivity of the asteroids can vary between 0.5 to 0.9 in
the mm/submm range [Redman et al. 1998]. Consequently, their brightness temperature
are often lower than the effective temperature at a given heliocentric distance.

Due to the asteroid rotation, the light curve of big asteroids as Vesta (diameter of
520 km) shows flux variations of about 5% [Redman et al. 1992]. It is well known from
radar observations that asteroids have very different shapes (e.g. include bone shape
for 216 Kleopatra observed by [Ostro et al. 2000]). In addition, the average asteroid’s
rotation period is ∼ 0.5 days, which shows the difficulty to exactly predict the asteroid
flux. Moreover, polarized emission from the asteroid edges will be a larger fraction than
for the small planets or giant satellites.

Thus, asteroids will be difficult to use as primary calibrators. They could possibly
play a role as secondary calibrators, specially at the highest observing frequencies where
planets are difficult to use (too large) and quasars too faint. The flux prediction will need
well calibrated flux measurement (i.e. versus planets) at different wavelengths to measure
the asteroid mm/submm emissivity prior to their future use as secondary calibrators.

3.4 Stars

As indicated by [Yun et al. 1998], Giant and Supergiant stars can be used for flux cali-
bration at submm wavelengths. They have submm flux ∼ 7 times stronger than nearby
main sequence stars. [Yun et al. 1998] listed about 30 sources, with on average, a diam-
eter of 0.005′′, a temperature of 4000 K and a flux at 690 GHz of 25 mJy. To first order,
the photosphere of these stars, which are optically thick, radiate as a blackbody with
spectral index of +2, and variability should be small. Extrapolation of the mm/submm
flux from measurement at other frequencies may be possible. However, contribution
from a stellar wind could perturb the spectral index, making an absolute flux prediction
difficult.

Long period variable stars (e.g. Miras and semiregular variables) could be also used as
flux calibrators as proposed by [Reid and Menten 1997] who observed 6 of these sources
at cm wavelengths. Within a period of 100-1000 days, their flux can vary by ±15% in
mm/submm range, but periodically. The variations are mainly due to star pulsation
which is also well modeled. The typical brightness temperature is about 1500 ± 500 K,
and the angular sizes are ≤ 0.1′′. They have flux of ∼ 1 mJy at 22.4 GHz, which, extrap-
olated at 230 and 690 GHz, gives ∼ 100 and 1000 mJy, respectively. High precision, low
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frequency measurements, combined with a known spectral index, could allow prediction
of the flux at the highest frequencies, making these stars attractive flux calibrators in
the submm domain. However, the spectral index (∼ 1.7) of the emission may not be
known with sufficient accuracy to allow accurate enough flux prediction.

Early type stars with stellar winds, like MWC349 [Altenhoff et al 1994], could also
play a special role. MWC349 is quite strong (1.7 Jy at 230 GHz), and has a well defined
spectral index of 0.6 over all the mm/submm range and even beyond, and is not variable.
The spectral index is theoretically understood as resulting from a 1/r2 fully ionized gas
distribution due to a stellar wind. This is thus a high brightness source (104 K), with
a very small, frequency dependent, size (' 0.05′′). MWC349 has been used as primary
calibrator at the IRAM Plateau de Bure interferometer for several years. Similar objects
in the southern sky could play the same role. ALMA could easily use stars which are 10
to 50 times weaker than MWC349.

A detailed “a-priori” prediction of the flux density for these sources is not possible, but
an accurate extrapolation as function of frequency (and time) based on other independent
measurements is certainly possible. These sources also provide the advantage of high
brightness temperatures (a few 1000 K instead of 100-200 K for planets and asteroids),
making them more suitable as calibrators at high angular resolution.

3.5 Quasars

Many quasar catalogs exist at radio wavelengths: VLA, PARKES, JVAS, IRAM with
a total of more than 10000 sources. Using principally in the JVAS catalog, quasar
flux distribution have been measured accurately at 86 GHz with the IRAM PdBI by
[Neri et al. 1998], in two 20 × 20 degrees square fields. The average flux obtained for
quasar to source distance equal to 2, 4 and 7 degrees are 0.1, 0.5 and 1.5 Jy respec-
tively. The theoretical spectral index is in the range of -0.5;-1.0 which corresponds to
synchrotron radiation. However, for our cm–flat spectrum selected spectra, the average
spectral index is equal to -0.5.

The synchrotron emission process implies that continuum flux is polarized. Measure-
ment at mm/submm wavelengths gives typical polarization in the range of 0-5%, although
some quasars like 3C279 display higher polarization (up to 40 %). Quasars usually have a
compact core. VLBI measurement indicate typical sizes of ∼ 0.001′′ [Bloom et al. 1999],
but a fraction of the flux could come from the radio jet, with sizes of 0.01′′ or more. Self
calibration of the quasar structure (or filtering of the baseline range) may be required on
the longest ALMA baselines before these quasars can be used as amplitude (and phase)
calibrators.

Strong quasars with known spectral index are needed for Bandpass calibration. Table
1 is a list of known strong quasars (with high flux at submm wavelengths) observable
by ALMA. These quasars are of course variable, but on average the 4 strongest are:
3C273, 3C279, OV-236, and 3C454.3 Extrapolation of their fluxes at 850 GHz gives
fluxes between 2 and 4 Jy. At the Chajnantor site, given the variety of hour angle and
declination, one of them will be available at anytime for bandpass calibration.

Quasar variability happens on all time scale [Steppe et al. 1993], but the most sig-
nificant variations have been measured on timescales of months to years. Maximum
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Table 1: Strongest quasars at mm/submm wavelengths. These averaged fluxes were
measured between 1985-1993 by [Steppe et al. 1993] and can vary by 50%. These values
are in agreement with more recent (1998-2000) IRAM observations.

Source α(J2000) δ(J2000) Flux@90 flux@230 SpI flux@850
1226+023—3C273 12:29:06.69985 02:03:08.596 20.0 10.0 -0.7 3.8
1253-055—3C279 12:56:11.16644 -05:47:21.523 20.0 10.0 -0.7 3.8
1334-127—OP-158.3 13:37:39.78281 -12:57:24.692 6.0 3.0 -0.7 1.1
1641+399—3C345 16:42:58.81020 39:48:36.995 6.0 3.0 -0.7 1.1
1730-130—NRAO530 17:33:02.70580 -13:04:49.547 5.0 3.0 -0.5 1.5
1921-293—OV-236 19:24:51.05610 -29:14:30.120 9.0 5.0 -0.6 2.2
2145+067 21:48:05.45899 06:57:38.606 5.0 2.5 -0.7 1.0
2223-052—3C446 22:25:47.25951 -04:57:01.389 5.0 2.5 -0.7 1.0
2251+158—3C454.3 22:53:57.74830 16:08:53.563 7.0 5.0 -0.3 3.1

Table 2: Calibrator Flux (mJy) computed for several frequencies and calibration sources.
Qband is the strong quasar used as bandpass calibrator. Q2, Q4, Q7 are quasars located
at 2, 4 and 7 degrees from the source. Star is a supergiant star, Ast is an asteroid, Sat
is a giant planet (Jupiter or Saturn) large satellite.

ν Qband Q2 Q4 Q7 Star Ast Sat
(GHz) Flux Density (mJy)

43. 7800 145 720 2200 .1 1.7 70
90. 6000 100 500 1500 .4 7.7 306

230. 4100 62 310 940 2.8 50.0 2000
350. 3500 51 250 760 6.4 116.0 4630
410. 3300 47 235 700 8.8 159.0 6360
690. 2700 36 180 540 25.0 450.0 18000
850. 2400 32 160 490 37.9 680.0 27300

variations occurs through bursts, where an increase of 50% of the intensity in a month
has been observed (i.e 1.7% per day). More typical intensity variations of 50% are ob-
served with timescales of a year (i.e 0.15% per day). Blazars are the most variable
(intraday variation of 5% at λ = 2 cm [Qian et al. 1991]) and should be avoided; they
also tend to display high polarization (e.g. 3C279 unfortunately).

3.6 Conclusions

Planets, asteroids, stars and quasars can be used calibrators for ALMA. The choice of
one observable calibration source at a given frequency is a compromise between their
flux and size and the ALMA sensitivity and spatial resolution. The typical flux values
are given in Table 2

Planets are the only primary calibrator for mm/submm, but their flux densities
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are not yet known with an absolute uncertainty better than about 5%. All the other
mm/submm continuum sources can be used as secondary calibrators. High accuracy
measurements of these secondary calibrators will be needed to measure properly their
flux in the mm/submm range. Most of the relative weak calibration source, as stars,
could be measured with enough accuracy probably only with ALMA. Before the use
of these secondary calibrators, some spectra modeling will be needed to improve our
knowledge of their flux variations as function of the frequency.

Since part of the relative amplitude calibration may be performed observing quasars,
their polarization must be taken into account. The final absolute accuracy will depend
of the measurements relative uncertainties (1% requested), and the absolute accuracy of
primary calibrators. Long term consistency at the 2% level should be easy to obtain at
mm wavelengths. The absolute flux scale, however, is currently undetermined at the 5%
level.

Spectral index knowledge will be required in many cases for an appropriate calibra-
tion. In the worst case, DSB operations near 90 GHz, the most extreme frequencies
sampled by the receiver will be separated by 24 GHz. In order to have a Γ% accuracy
on the relative gain at these two frequencies, the spectral index of the reference calibrator
should be known with an uncertainty of less than 0.04Γ. For Γ = 1, this precision on
the spectral index could be obtained from two measurements at 100 and 350 GHz with
3% accuracy, or between 100 and 650 GHz with 5% accuracy. Conversely, a prediction
at 650 GHz to Γ = 1% from a 100 GHz flux measurement requires a spectral index
accurate to 0.005.

For further use, we shall express the calibration source flux dependence in frequency in
terms of a spectral index α as

Sν(ν) = S100

( ν

100GHz

)α

(1)

where S100 is the source flux at 100 GHz. Unless otherwise specified, for all numerical
applications, observation frequencies will be given in units of 100 GHz, and bandwidths
in units of 1 GHz.

4 Weather statistics

Weather statistics are needed to estimate properly the different weather conditions ex-
pected at the ALMA site. The weather statistics of the ALMA site presented in Table
3 are based on different measurements: meteo station, radiosonde, FTS and 12 GHz
interferometer (see http://www.tuc.nrao.edu/mma/sites/). Extrapolation from this
table indicates that about 10% of the time will have precipitable water vapor of less than
0.3 mm, suitable even for the highest frequency observations.

Table 3 does not represent the correlation between the various parameters. We have
attempted to first order to do so in our adopted atmospheric parameters when computing
the ALMA sensitivity as indicated in Table 5. A drawback of the current approach is
that we do not consider phase stability in this analysis. This is not a critical issue for low
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Table 3: Weather statistics at the ALMA site

Time (%)
25 50 75

Opacity at 225GHz 0.037 0.061 0.117
Precipitable Water Vapor (mm) 0.7 1.2 2.3
Pathlength Rms on 300-m baseline (µm) 123 254 531
Temperature (◦C) -7.6 -2.4 3.2
Local Wind Speed (m/s) 3.1 6.4 10.3

Table 4: Optimum frequency for observations versus weather conditions and percentage
of observing time

Cumulative pwv Freq % total
time(%) (mm) (GHz) time

99 5.0 43–90 25
75 2.3 230 25
50 1.2 350 25
25 0.7 410 15
10 0.3 690–850 10

frequency observations (< 400 GHz), but could be a serious problem for submillimeter
observations, since high transparency conditions are not necessarily related to good phase
stability.

Table 5: Adopted percentiles for the computation of the system temperatures. Note that
this differ from Table 3 by trying (grossly) to account for correlations between opacity
and temperature.

Percentile τ(225 GHz) Water vapor Temperature Observing
Max. Typical Frequency

75 % 0.117 < 2.3 mm 2.3 mm +3◦C < 250 GHz
50 % 0.061 < 1.2 mm 1.2 mm 0◦C < 370 GHz
25 % 0.037 < 0.7 mm 0.5 mm -5◦C 700 GHz
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5 Sensitivity

The single-baseline flux sensitivity is defined by the standard noise equation

σb =
J

ηcηp

Tsys√
2∆νt

(2)

where J is the Jy/K conversion factor of the antenna, related to the collecting area A
and aperture efficiency ηa by

J =
2k

ηaA
(3)

Tsys is the system temperature, ηc is the correlator efficiency, ηp is the efficiency resulting
from short term phase noise (instrumental and atmospheric), ∆ν the bandwidth and t
the integration time. We shall use ηcηp = 0.85 and

ηa = ηi exp

[
−

(
4π

σ

λ

)2
]

(4)

where ηi = 0.8 is the illumination efficiency, and σ = 20µm the rms surface error.
[Lucas 1998] showed that the amplitude gain noise σg is related to the baseline

sensitivity σb through the baseline signal to noise ratio on a point source of flux Sν by

σg = 2
σb(∆ν, t)

Sν

√
2N − 3

2(N − 1)(N − 2)
' 2

σb

Sν

√
N

(5)

where N is the number of antennas, ∆ν the bandwidth, t the integration time.
The phase gain σφ noise is simply

σφ (radians) = σg σφ (◦) ' 57.3σg (6)

For further numerical applications, we define the quantity σ0 as

σ0 = 2σb(∆ν = 1 GHz, t = 1 s)

√
2N − 3

2(N − 1)(N − 2)
(7)

hence

σg = σφ =
σ0

Sν

1√
∆ν(GHz)t(s)

(8)

From now on, we shall express all bandwidths in GHz, all integration times in seconds,
and all flux densities in Jy, unless specifically quoted.

To compute σ0, let us first compute the typical system temperature. We assume the
standard ALMA specification for receiver temperature:

Trec(ν) = 6hν/k + 4 K (ν < 400GHz) and Trec(ν) = 10hν/k + 4 K (ν > 400GHz)

for single sideband receivers (rejection better than 10 dB), and

Trec(ν) = 3hν/k K (ν < 400GHz) and Trec(ν) = 5hν/k K (ν > 400GHz)
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for double sideband receivers.
We also assume the forward efficiency is falling down from 0.95 at low frequencies

to 0.90 at 900 GHz (as ν2). This assumption follows the observed behaviour of existing
antennas, and should be verified by measurements on the prototype antennas.

The atmospheric conditions are taken from the weather statistics percentiles, with
temperature adjusted to account (to first order) for the imperfect correlation between
temperature and opacity. We assume dynamic scheduling will match the observed fre-
quency to the appropriate observing conditions, more precisely that observations above
370 GHz will be done only in the 25 % best observing time, observations between 270
and 370 GHz only in the 50 % best observing time, and “low” frequency observations in
the remaining available good weather (see Table 5). The frequency setup is done in such
a way to minimze the image sideband contribution to noise whenever possible. Note
that under these conditions, the SSB receivers still provide better performances than the
DSB receivers (for spectral line observations, but not always for continuum work), even
at submm wavelengths.

Figure 1: Expected typical system temperatures with ALMA. The black curves corre-
spond to Single Side Band tuned receivers (image rejection 10 dB), while the red curves
correspond to Double Side Band tuned receivers. Several approximation curves are in-
dicated. Created by default tsys.astro

Figure 1 gives the corresponding expected system temperature. Several “simple”
approximations can be given for Tsys as function of frequency provided the observing
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Table 6: ALMA array sensitivity as function of frequency and precipitable water vapor
(pwv), for 1 second integration time and 8 GHz bandwidth. J is the antenna gain as
given from Eq.3. σb and σp are the total array and baseline sensitivity, respectively, for
point sources. σ0 is the single antenna sensitivity given for 1 GHz bandwidth.

Frequency pwv Tsys J σb σ0 σp

(GHz) (mm) (K) Jy/K (mJy) (mJy) (mJy)
43. 2.3 45 30.5 12.8 9.1 0.28
90. 2.3 70 30.5 19.9 14.2 0.44

230. 2.3 150 31 43.2 30.9 0.96
350. 1.2 250 33 76.7 54.9 1.71
410. 0.5 400 35 130.2 93.2 2.90
690. 0.5 1200 40 446.4 319.5 9.94
850. 0.5 1200 50 558.0 399.3 12.43

frequency is far enough from an atmospheric line (of O2 or H2O).

Tsys(ν) = 15 + 60(ν/100 GHz) K (for ν < 370 GHz) (9)

Tsys(ν) = 1000(ν/500 GHz)4.5 K (for 370 < ν < 500 GHz) (10)

Tsys(ν) = 1200 K (for ν > 600 GHz) (11)

We use an aperture efficiency ηa derived from the 20 µm surface accuracy specification,
the 12-m diameter, and assuming a 2.5 % blockage. The single baseline point source
sensitivity as function of of frequency is given in Figure 2. It is normalized to 1 second of
integration and 1 GHz of bandwidth, to provide convenient scaling for further use. The
value of σ0 for ν ∼ 90 − 100 GHz is about 14 mJy. Values of σ0 at the band centers at
given in Table 6, together with the baseline noise σb and array point source sensitivity
σp for 8 GHz bandwidth

6 Atmospheric Transparency and Receiver Gain

The atmospheric amplitude calibration was studied by [Yun et al. 1998],
[Bock et al. 1998], [Mangum 2000], [Plambeck 2000]. In ALMA memo 371,
[Guilloteau & Moreno 2001] we explicited some of the specifications of the two
most promising techniques. We found that the semi-transparent vane calibration
method provides a number of technical advantages (simplicity, location, and possibility
to calibrate it). We discuss here the calibration uncertainties related to atmospheric
modeling in the two methods.
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Figure 2: Single antenna sensitivity (σ0) as defined in Eq.7 for 1 second integration and
1 GHz of bandwidth for 64 12-m antennas. Created by default sens.astro

6.1 Semi-Transparent vane calibration

In the semi-transparent vane calibration method, the measurement equations are (see
ALMA memo 371 [Guilloteau & Moreno 2001] for the notations):

Psky = K(T )(Trec + Jsky) (12)

Pload = K(T )(Trec + fJload + (1− f)Jsky)

Csource = K(T )ηe−τTA

This is a one-load calibration method, for which the source antenna temperature is given
by

TA = fTcal
Csource

Pload − Psky

(13)

where Tcal is the calibration temperature [Ulich & Haas, 1976]

Tcal = Js
spill − Js

bg + g(J i
spill − J i

bg) (14)

+ (eτs − 1)(Js
spill − Js

m + g(J i
spill − J i

m))

+ g(eτs−τi − 1)(J i
m − J i

bg)

+
eτs

η
(Js

load − Js
spill + g(J i

load − J i
spill))
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where J j
x is the Rayleigh-Jeans equivalent temperature of a black body at temperature

Tx and frequency νj. j takes values s or i for signal or image bands respectively.

J j
x =

hνj

k

1

ehνj/kTx − 1
(15)

Jm is the effective temperature of the atmosphere (the physical temperature of the ab-
sorbing layers, not the apparent brightness temperature). Calibration requires the knowl-
edge of calibration device related parameters (f and Jload), antenna related parameters
(η and Jspill), receiver related parameters (g) and atmospheric parameters (Jm and τs

and τi). Having so many parameters looks a priori complex and error prone, but we shall
see that Tcal actually depends only marginally on some of them.

6.1.1 Absolute errors

The expression of Tcal has two useful limiting cases, which can be very helpful in deriving
the major uncertainties: the homogeneous temperature case Jload ' Jm ' Jspill for which

Tcal ' (1 + g)Jm (16)

and the low opacity case τ ¿ 1, for which

Tcal ' 1 + g

η
(Jload − (1− η)Jspill) = (1 + g)Jspill +

1 + g

η
(Jload − Jspill) (17)

Tcal is thus of order 300 K, for a single sideband system (g = 0). At low frequencies,
where τ is small, the error on Tcal can be simply derived from the partial derivatives of
Eq.17

∂Tcal

∂g
= Jspill + (Jload − Jspill)/η

∂Tcal

∂η
= (1 + g)(Jload − Jspill)/η

2

∂Tcal

∂Jspill

= (1 + g)(η − 1)/η

∂Tcal

∂Jload

= (1 + g)/η

Orders of magnitude of the errors are easy to obtain with this expression. The load
temperature should be measurable with 0.2 K accuracy, giving δTcal(load) ' 0.2 K, g with
0.5 % precision δTcal(g) ' 1.5 K, and η ' 0.95 to about 0.2% precision, δTcal(η) ≤ 0.05 K.
The error on Jspill is less straightforward, since part of the spillover is in the receiver cabin,
while part is towards the antenna or the ground, at the ambient temperature, but even
assuming an error of up to 6 K on this value, the contribution to the error on Tcal is
small because of the factor η − 1, δTcal(spill) ≤ 0.3 K. Sideband gain ratio taken apart,
the expected precision error is thus δTcal . 0.4 K, i.e. better than 0.2 %

Similarly, for high opacities where the other approximation is reasonably valid,
one immediately sees than the dominant error is on the evaluation of Jm, and of
course g. [Plambeck 2000] estimates an error of order 5 K (i.e. 2%) on Jm (see also
[Pardo et al. 2001]).

15



6.1.2 Elevation dependence

Another important aspect is the derivative of Tcal relative to the opacity τ . It will play a
role in 1) the variation of the calibration from one antenna to the other, 2) the variation
of the calibration as function of time due to varying opacity, and 3) elevation dependent
errors which could play a role when bootstrapping a flux measurement from observations
at different elevations. For simplicity, let us neglect the opacity difference between the
image and signal band, τ ≈ τs ≈ τi

∂Tcal

∂τ
= eτ (1 + g)(Jspill − Jm) +

eτ

η
(1 + g)(Jload − Jspill) (18)

−(eτ − 1)(1 + g)
∂Jm

∂τ
∂Tcal

∂τ
≈ eτ

η
(1 + g) [(1− η)Jspill + (Jload − ηJm)] (19)

where we have neglected the implicit (but small) dependence of the effective temperature
of the atmosphere Jm on the opacity in the last equation. We typically have Jspill = 270 K,
Jload = 290 K and Jm = 260 K giving an opacity derivative of about 70 K per neper,
times the (1 + g)eτ/η factor.

At low frequency, the derivative is about 70 – 80 K, while for high frequency obser-
vations where the opacity could be of order 1, this goes up to about 160 K. Since Tcal is
of order 300 K, it can be seen that the maximum opacity change is about 0.04 Γ at mm
wavelengths for a relative precision Γ%. At submm wavelengths, the maximum tolerable
opacity change is only 0.015 Γ.

We can apply these values to derive

1. The antenna to antenna variation: using the median pathlength fluctuations,
250 µm on a 300 m baseline, [Plambeck 2000] estimate a maximum variation
δτ/τ ≈ 0.03 for 1.5 km, which is below the tolerance level at mm wavelengths,
but a factor 2 above at submm wavelengths.

2. The time variation: it can be related through the Taylor hypothesis to pathlength
fluctuations using the mean wind speed. Again, a value of δτ/τ ≈ 0.03 is found
for a timescale of about 3 minutes. Calibration should then be performed more
frequently. Note that a differential opacity correction based e.g. on the WVR
measurement is easy to implement.

3. The elevation tolerance in case of inaccurate opacity correction. This is relevant
in all relative amplitude calibration schemes, including flux bootstrapping from
a primary calibrator. The tolerable change in airmass can be derived from the
uncertainty on the opacity and the required precision level from

δAirmass δτz

(
1

Tcal

∂Tcal

∂τ

)
< Γ (20)

where τz is here the zenith opacity. At mm wavelengths, where 1/Tcal∂Tcal/∂τ
is quite small (of order 0.25), the elevation can change quite significantly before
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the error on the opacity becomes a significant effect. At submm wavelengths,
1/Tcal∂Tcal/∂τ ≈ 0.5. For δτz . 0.1, the airmass tolerance is about 0.2, corre-
sponding to about 8◦ near 45◦ elevation. Accurate relative amplitude calibration
will be possible within this elevation range.

Given these numbers, applying a single value of Jm and τ derived from either the mean
of all antennas, or an independent atmospheric sounding device, will give best results at
mm wavelengths. An independent sounding device would have the advantage of not using
precious observing time, as well as most likely providing more accurate measurements.

6.2 Dual-Load Calibration Method

With two loads located in the subreflector, the calibration equations are

Phot = K(T )(Trec + fJhot + Jsky + gsηe−τTA) (21)

Pamb = K(T )(Trec + fJamb + Jsky + gsηe−τTA) (22)

Csource = K(T )gsηe−τTA (23)

gs is here the signal gain, normalized such that gs + gi = 1, i.e. gs = 1/(1 + g) when
expressed in terms of sideband gain ratio. The calibration temperature is

Tcal = (1 + g)
eτ

η
f(Jhot − Jamb) (24)

Calibration thus requires the knowledge of 6 independent parameters: the two load
temperatures Jhot and Jamb, the beam coverage fraction f (discussed in Memo 371
[Guilloteau & Moreno 2001]), and the forward efficiency η, the sideband gain ratio g
and the atmospheric transmission τ .

6.2.1 Absolute Errors

We can easily compute the partial derivatives of Eq.24 to get the typical errors in the
calibration due to τ, η and g

∂Tcal

∂τ
= Tcal ;

∂Tcal

∂η
= −Tcal

η
;

∂Tcal

∂g
=

Tcal

1 + g
(25)

Compared to the semi-transparent vane calibration, the error introduced by the uncer-
tainty on g is identical, while the errors introduced by the uncertainty on η and τ are
larger (by a factor 2 to 10). Accordingly, the absolute calibration with the dual-load
method is intrinsically less accurate than the vane calibration technique.

6.2.2 Elevation Dependence

From Eqs.20 and 25, the tolerance on the change in airmass before the opacity correction
becomes too uncertain is simply given by

δAirmass = Γ/δτz (26)
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Again, at mm wavelengths, this is not a serious issue, but at submm wavelengths, a
precision of Γ = 1% restricts the airmass change to 0.1 (or about 4◦ near 45◦ eleva-
tion) for a typical error on the opacity of 0.1. If, as argued by [Plambeck 2000] and
[Pardo et al. 2001], the typical opacity error is better than 0.05, an elevation tolerance
of about 7◦ would still be acceptable.

7 Bandpass, Sideband gain ratio, and Delays

In previous section, we have seen that the sideband gain ratio of the receiver plays a
major role in the accuracy of the calibration. This gain ratio is only one aspect of
the more general Bandpass Calibration. Bandpass calibration can be decomposed in
several steps

1. Delay measurement (i.e. average phase slope over the receiver band)

2. Sideband gain ratio measurement

3. Fine scale bandpass structure due to backend (at the observed spectral resolution,
which we call the User configuration)

4. Large scale bandpass structure due to frontend and antenna

We shall evaluate the time required for these various steps.

7.1 Delay measurement

This has to be performed both at the observing frequency νobs and at the calibration
frequency νcal. A strong point source is sufficient for this. It can be located far away
from the observing direction. The delay error is

δτg =
2

π∆νB

σφ (27)

where ∆νB is the available bandwidth for the delay measurement, i.e. 8 GHz in our case
(the two polarizations have to be calibrated independently). Inserting numerical values,
we obtain

δτg (nsec) = 0.080
σ0

Sν

(∆νB (GHz))−1.5t−0.5 (28)

Using Sν = 1 Jy as a typical number, and ∆ν = 8 GHz (since each polarization must
be calibrated separately), we obtain δτ < 10−4 nsec at all mm frequencies in just 1
second of integration time, and δτ < 2 10−3 nsec at submm frequencies. The latter value
guarantees less than 6 degree phase slope across the full bandwidth (8 GHz).

7.2 Sideband gain ratio

This may vary on scales of a few 100 MHz, e.g. ∆νG = 250 MHz or so. The error on
sideband gain ratio is

δTcal

Tcal

=
δg

1 + g
= σg =

σ0

Sν

√
∆νGt

(29)
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where g is the image to signal gain ratio. The required time is

tgain =

(
100σ0

ΓSν

)2
1

∆νG

(30)

where Γ is the required calibration accuracy (in percent). Using Sν = 1.5 Jy as a typical
number (Q7 quasar), and ∆ν = 0.25 GHz, gives a precision of Γ = 1 % in 4 seconds of
time at 100 GHz. At submm wavelengths, where σ0 is 30 times larger and the flux weaker,
this becomes more than 1000 times longer. . . . Using the strongest quasars (Qband) allows
to bring back the time to about 7 minutes. Note that the required calibration time goes
as 1/Γ2.

The spectral index of the calibration source must be taken into account in the deriva-
tion of the sideband gain ratio by such a method. In the worst case conditions (near 93
GHz) the difference in frequency between the two sidebands reaches 30 %. The spectral
index should thus be known to better than 0.04Γ at this frequency; the tolerance de-
creases linearly with observing frequency. It should also be noted that when the signal
and image band opacities differ, there is a coupling between the measurement of the side-
band gain ratio and the atmospheric calibration. An iterative process could be needed
to solve the problem (although a single measurement is sufficient).

7.3 Fine scale bandpass

Standing waves excepted, the fine scale bandpass structure can be referenced to large
scale bandpass structure by observing at any frequency, since it is backend dependent
only. To calibrate it, one could observe a strong, low frequency, source with the User
configuration and with the correlator in broad band mode. This does not require any
special device, and makes no assumption about the backend properties. A differential
delay may appear during this calibration step, see Section 7.1 for its calibration. The
typical error will be σφ = σg = σ0/(Sν

√
∆νFt). Using the stronger calibrators, Sν = 6 Jy,

an integration time of one minute is required for 1% precision for a resolution of 1 MHz.
The integration time goes as 1/Γ2.

Another potential method is the use of a frequency scanning, coherent emission device
located in the antenna subreflector. A few picoWatt of coherent signal would already give
a million times stronger signal than the “strong” calibrator mentioned above. However,
it would be required to control the dependence of this power level as function of frequency
to better than 1 % accuracy, which may prove difficult because of standing waves. Note
that the standing waves which may affect this calibration signal are neither the ones
affecting the source signal, nor the ones affecting the sky and antenna background.

Eventually, we may rely on the properties of digital filtering to perform the fine scale
bandpass calibration. If all filters are digital, there should be no phase distortion and a
predictable amplitude response pattern for the narrow filters. With a stable backend, this
fine scale bandpass structure is reproducible and can be tabulated. The only difficulty
is the large number of correlator configurations . . .
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7.4 Large scale bandpass

The large scale bandpass structure is tuning dependent, and hence has to be calibrated
at the observing frequency. With receivers having an instantaneous bandwidth of 4 to 8
GHz, and samplers at 4 GHz clock rate, we do not expect structures on scales smaller
than about 300 MHz. Our goal is thus to obtain Γ % accuracy on such bandwidths. The
calibration scheme must be able to provide enough sensitivity to reach this accuracy.
The integration time goes as 1/Γ2.

The numbers to be considered here are similar to those for the sideband gain ratio
measurement. Astronomical sources are quite suitable to give this precision at mm
wavelengths, but far too faint at submm wavelengths. This leaves two possibilities only:
using the reference signal in the subreflector, or relaxing the requirement on Γ.

The large scale bandpass calibration can use the same data than the sideband gain
ratio measurement. However, linking it to the fine scale bandpass data also requires a
bandpass / sideband ratio measurement at the calibration frequency νcal.

7.5 Standing waves

In the above discussion, we have ignored the possible standing waves which may distort
the bandpass shape. With the ALMA antenna parameters, frequency ripples due to
standing waves will have a period of about 31 MHz. Sampling the standing wave pattern
thus require a spectral resolution of order 2-3 MHz. Calibrating the pattern will be about
100 times longer than required for the large scale bandpass or sideband gain ratio. It
will still be possible on astronomical sources (see Section 7.3) at mm wavelengths, but
not at sub-mm wavelengths (however, this may not be required, see below).

There are several types of standing waves, which affect the signal differently.

1. The first type is a modulation of the antenna background. It affects the value of the
system temperature, and thus the conversion from correlation coefficient measured
by the correlator to correlated intensity as required for astronomical purpose.

2. A second type is a modulation of the transmission function of the source signal,
which directly affects the correlated intensity.

The standing wave pattern may vary with elevation because of the elevation dependent
deformations of the antennas. It could thus play some role in the relative amplitude
calibration. Moreover, the patterns are independent between antennas. Hence, there will
be an averaging effect, which will reduce the net effect on correlated intensities. This
may bring the effect below the tolerable level. To remove the remaining baseline-based
effect, it would be preferable to use an half-wavelength modulation scheme to reduce any
standing wave pattern below the required precision level than to try to calibrate it.

Note that the amplitude of standing waves is inversely proportional to frequency.
Accordingly, standing waves will mostly impact mm wavelengths observations. Detailed
computations of the expected standing wave patterns based on the current antenna
design are required to assess which strategy is best in handling this problem.
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8 Pointing

For pointing calibration, we want the best rms on pointing errors. Pointing errors are
related to the amplitude gain noise by

σθ ∝ θσg (31)

where θ is the full width at half power primary beam width. The proportionality coef-
ficient varies with the pointing measurement technique used (cross scans, three points,
five points, circles, etc. . . ) and can be optimized.

To compute the effective sensitivity, we shall use a semi-optimized five point method.
In a five point method, with offset θ/a, we have

σθ = θσg

√
e

4
√

log 2
f(a) (32)

where f(a) is a function of minimum value 1, reached for a =
√

8 log 2. With an appro-
priate cycle so that one out of 5 antennas is always pointed, the gain of each mispointed
antenna is

B(a) = exp

[
−

(
a2
√

log 2

θ

)2
]

(33)

times the gain of each pointed antenna. Adding their contributions quadratically yields
an improvement in sensitivity compared to the simple case of

√
((1/B(a))2 + 4)/5

With the value of a as above, B = 1/
√

e, this gain is
√

(4 + e)/5

σθ = θσg

√
e

4
√

log 2

√
5

4 + e
' 0.43σgθ (34)

Since the primary beam width is ∝ ν−1, with a value of ∼ 62′′ at 100 GHz, the
pointing error is

σθ = 26′′
σ0

S100

ν−α−1 (35)

In general, we will have to use quasars as pointing calibrators; in some circumstances,
asteroids or major satellites could be used. The typical spectral index of a quasar is -0.3
to -0.7. Figure 3 gives the optimal pointing frequencies as function of spectral index and
observation conditions (percentiles). This figure shows that the optimal frequency for
pointing is near 100 GHz, whatever the observing circumstances. It also shows that there
is little difference between the 3 mm window and 2 mm windows for this, so that it is
not absolutely necessary to switch to the 3 mm receiver to calibrate 2 mm observations.
The subscan time is given by

t =

(
26′′

σθ

σ0

S100

)2
1

∆ν
(36)
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Figure 3: Relative sensitivity for pointing calibration as function of calibration νcal. Left
column corresponds to low frequency observations, middle to 350 GHz observations, and
right to submm observations. 3 different spectral index values have been used to derived
the plots (α = −0.7,−0.5,−0.3 from top to bottom). Created by all point.astro

and for σθ = 0.25′′ pointing error in each direction (consistent with the goal of 0.7′′ global
pointing error), it is 12 seconds on a 0.1 Jy source at 90 GHz with 16 GHz bandwidth. We
should add dead times (1.5 s) between each subscan, plus time to move to the pointing
calibrator (at 3◦/s angular speed). The typical total time to point on a 0.1 Jy source is
thus 70 seconds.

An alternative, much more attractive solution, is to derive a local pointing model
by measuring several nearby sources. The antenna specification calls for a pointing
accuracy of 0.6′′on a timescale of 30 minutes. In 30 minutes, due to earth rotation, the
source position will drift 7 degrees on the sky. Hence, a local measurement 2 degrees
away is not the most appropriate sampling of the pointing parameters. It is better to
use a few (3–5) sources located between 4 and 7 degrees from the source. Since the
typical flux of quasar at 4 degrees is about 0.5 Jy at 90 GHz, the required integration
time per subscan goes down to 0.5 s. The observing time is thus totally dominated by
antenna slew times. In a minute, it would be possible to observe 4 to 5 quasars, derive
a local pointing model, and measure the effective pointing scatter (actual rms pointing
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error). Since more than one direction is used, the pointing model could have a (local)
dependence on Azimuth and Elevation, which could be applied for the source position
until the next pointing measurement.

We used here an optimized 5 points method to estimate the integration time. A
method scanning the antennas in a circle at the half-power of the primary beam would
require similar integration times, but have less overhead.

9 Focus

For focus calibration, we want the best rms on pathlength errors. In an interferometer,
a focus measurement is typically made by moving the subreflector to 3 or 5 different
positions, proportional to some focus Offset. As for the pointing, interleaving the offsets
between the various antennas maximizes the precision. Pathlength errors are related to
the amplitude gain noise by

σfocus ∝ Offset σg (37)

The proportionality coefficient varies with the choice of the subreflector offsets and can
be minimized. The minimization gives an Offset which is proportional to the observing
wavelength.

For example, for a 3 point measurement, we can derive the optimal focus offsets from
the Gaussian beam approximation. The waist of the beam is

w0 =
λ

π
2F
√

0.115Te (38)

where F is the secondary F ratio (8 for the ALMA antennas) and Te the edge taper in
dB (10 to 12 for ALMA receivers). The focus curve is given by

k(Z) =
1

1 + ( Zλ
2πw2

0
)2

= 1/(1 + x2) (39)

where Z is the feed horn displacement. For sub-reflector displacement z, we have to
enter the magnification factor m2 + 1. Hence x = (z/z0) with

z0 =
λ8F 20.115Te

π(m2 + 1)
= 1.4 mm

(
λ

3 mm

)
(40)

The derivative of the focus curve is maximum for xopt = 1/
√

3, for which

zopt = 0.8 mm(λ/3 mm) and k(zopt) = 0.75 and k′(zopt) =
√

27/(8z0) (41)

and the focus error is related to the relative precision error by

σfocus = σg
1√

2k′(zopt)
= z04

√
2√
27

σg = K
σ0

S100

ν−α−1 (42)

giving K = 1.5 mm. Hence, focus measurement have the same dependence with fre-
quency as pointing measurements. Thus, Figure 3 can also be used to derive the optimal
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focus frequencies as function of spectral index and observation conditions (percentiles).
Frequencies around 90-100 GHz are optimal.

The typical timescale can be computed from σ0(100 GHz) = 14 mJy. A Γ % gain
error due to focus corresponds to δx = 0.1

√
Γ, i.e.

σfocus = 0.14 mm

(
λobs

3 mm

)√
Γ

Reaching Γ = 1% at the 3σ level for 900 GHz observations require an accuracy of about
5µm, corresponding to a signal to noise ratio of about 300:1. With a bandwidth of 16
GHz, and a source of 1 Jy (which can be found within 10 degrees of any source), this
can be obtained in just 1 second of time per point.

However, there may be a somewhat better tradeoff for focus measurements when we
take into account the time required to move the subreflector to the appropriate offsets.
Since that time is proportional to the wavelength, slightly higher frequencies will be
favored. Moreover, one may legitimately worry about measuring a difference of 5µm
from a 0.8 mm physical displacement. Going to higher frequencies (e.g. 230 GHz) would
also be preferable from this standpoint, at least when observing at submm wavelengths.
The integration time per subscan would only slightly increase. In summary,

Tfocus(sec) ' 3
( νobs

900 GHz

)2 1

Γ
+ motion time + slew time (43)

is a reasonable estimate. Note that with a focus change rate of order 50 µm per hour, the
focus may need to be checked every 7 minutes for high frequency observations. For 300
GHz observations, a check every 20 minutes is sufficient. Prediction of the focus change
rate (which should be relatively easy, either from thermal monitoring of the antennas, or
from empirical relations such as using the last measured rate averaged over all antennas)
could help relaxing these numbers.

A last point which should be mentioned is the determination of the relative focus
at the observing and calibration frequency. This requires measuring the focus at the
observing frequency, rather than at the calibration frequency. In the worst case condition
(900 GHz observations), where σ0 is about 30 times larger than at 100 GHz, one would
need several minutes if the focus was measured on a quasar. This would be problematic,
because decorrelation losses due to atmospheric phase noise would not be negligible on
such a time scale, and would bias the result. It will be much more efficient to measure
that on planets in total power, using a fast scanning technique. Another alternative
would be to use a Jupiter or Saturn satellite, which still benefits from the interferometric
mode in the more compact configurations. Asteroids also are appropriate, and provide
the advantage of always having one visible; they can also be used in more extended
configurations. The focus dependency on wavelength should then be tabulated, and
regularly checked.

10 Phase

When applying phase calibration, we wish to minimize the calibration time, specially
for fast phase switching. We wish to obtain a given pathlength accuracy in this mea-
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surement. For each antenna, the pathlength precision obtained on a source is given
by

σpath = λ
σφ

2π
=

cσ0

2πνSν

=
cσ0

2πS100

ν−1−α (44)

With our standard units,

σpath(µm) ' 500
σ0

S100

ν−1−α(t∆ν)−1/2 (45)

We have to use quasars as phase calibrators, since point sources are required. The
typical spectral index of a quasar is -0.3 to -0.7. As for POINT and FOCUS, Figure
3 gives the optimal PHASE calibration frequencies as function of spectral index and
observation conditions (percentiles). Taking the nearest quasar result in an expected
flux S100 = 0.1 Jy for which

σpath(µm) ' 70(t∆ν)−1/2 (46)

The required pathlength accuracy is dependent on the observing frequency. The main
goal is to minimize the coherence losses. The long term decorrelation loss is exp(−σ2

φ).
A Ψ = 3% degradation in sensitivity (i.e. ηp = 0.97, consistent with our assumption of
ηcηp = 0.85 for a full 2-bit correlator) is obtained for σφ = 10◦, corresponding to a path
length of about 10 µm at 900 GHz. With 8 GHz bandwidth, this is reached in 6 seconds.
The calibration time is

Tphase(sec) ' 6
( νobs

900GHz

)2 1

Ψ
+ slew time (47)

Eq.47 indicates the minimum integration time on a calibrator to determine the instru-
mental phase with 10◦ accuracy. However, the net remaining phase noise after a calibra-
tion cycle is given by the root phase structure function measured on an effective baseline
length b = vtcycle/2 + θL where L is the altitude of the turbulent layer above the site, θ
the angular distance between the source and the calibrator, v the wind speed and tcycle

the cycle time. An optimal cycle is obtained when vtcycle = 2θL, which is 8 seconds for
L ' 1 km, θ ' 2◦, and v ' 10m/s. However, the net phase error correspond to the
root phase structure function on the effective baseline length b which is about 70 m in
this case, giving a median pathlength P (b) = 250 µm (b/300 m), or 70− 100 µm on such
an effective baseline. Variations by a factor two in each direction will occur due to the
weather statistics.

Phase errors will thus be completely dominated by atmospheric effects in the Fast
Switching technique. The integration time on the calibrator can be decreased accordingly.
With such short timescales, and balanced integration time between the source and the
calibrator, decorrelation on source and on calibrator is similar, so that accurate amplitude
calibration is still possible.

An alternate phase calibration technique is to use the Water Vapor Radiometer
(WVR). In this case, the remaining phase error on medium timescales (longer than
the fast cycle time tcycle, but shorter than the WVR stability time) is a combination of
the WVR stability (expected to be 20 µm) and a fraction of the required pathlength
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correction, εP (vt). For calibration every minute or so, and ε = 0.1 (10% precision of
the radiometer), the latter term is of order 30 µm. This assumes that this systematic
error is antenna dependent, which is a worst case assumption valid for long baselines.
Correlated errors will reduce this value to a baseline length dependent result.

A variant of the WVR calibration system is an empirical correction based on the
correlation between WVR output and measured antenna phase. In 1 sec of time, which
corresponds to the crossing time of the phase screen over one antenna diameter, the
pathlength can be measured to about 20 µm precision, similar to the WVR stability. The
correlation between WVR output and antenna phase could thus be empirically calibrated
and regularly monitored by looking at the nearest quasar. Since the typical atmospheric
timescale is 1 second, the correlation coefficient between WVR and measured phase
would need 100 seconds to be measured with 10 % accuracy. This result is independent
of the strength of the reference quasar.

The effect on images of the WVR phase correction are more subtle than in the fast
switching case, since part of the remaining phase error still depend on baseline length.
It will result in a pseudo-seeing, in which part of the source flux is scattered in an error
beam, similar to adaptive optics at visible wavelengths with Strehl ratios of order 0.7 to
0.85.

11 Flux Scale

11.1 Ab-initio or “a posteriori” Amplitude Calibration ?

In the amplitude calibration, two somewhat different strategies exist.

“a posteriori” approach
The traditional approach used in current mm interferometers is to refer the amplitude

scale to one (or more) reference quasars. This is an “a posteriori” scheme which offers
the advantage of calibrating even poorly understood effects: the global system gain
is measured in one operation by comparing the (non-calibrated) array output to the
(assumed) source flux. To work efficiently, the integration time needed to reach the
specified accuracy level must remain short compared to the available observing time.
The integration time is given by

tamp =

(
100σ0(ν)

S0να

)2
1

Γ2

1

∆ν
(48)

Since the accuracy of opacity correction allows to take a source 10◦ away, we can use a
Q7 quasar of typical flux S0 = 1.5 Jy, and ∆ν = 8 GHz, we obtain

tamp(sec) '
(

σ0

30mJy

)2

ν−2α 1

Γ2
(49)

For Γ = 1%, taking the value of σ0 from Fig.2, we find this is below 6 sec up to 350 GHz,
but goes up to 10 minutes at submm wavelengths.
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ALMA can certainly apply this scheme at low frequencies since the integration time
to reach Γ% precision on the antenna gain is short. Short timescale guarantees negli-
gible decorrelation losses. The differential opacity correction due to inaccurate opacity
prediction will also be small for a 7◦ offset (see Section 6). Elevation dependent antenna
gain plays a different role for small and extended sources.

The amplitude calibrator flux can be bootstrapped to a primary calibrator once
during the observation. Some caution should be taken to match the elevation of the two
calibrators during this process to within the required 10− 15◦ tolerance.

“ab-initio” method
At high frequencies, the above method is no longer valid, because the integration time

becomes prohibitive. Limiting the calibration time to about 1 minute implies reducing
the accuracy to about Γ = 3%. For such integration times, the decorrelation effect is
not completely negligible. The alternative method is to guarantee that the instrumental
gain is stable and known with sufficient accuracy. This is an ab-initio absolute amplitude
calibration. Since accurate control of the pointing and focus is possible within reasonable
integration times, such a method can be applied to ALMA. This approach leaves two
potential error terms:

• Imprecise receiver and atmospheric calibration

• Decorrelation effects

The first term affects the relative antenna calibration, and could potentially limit the
imaging quality. Poor estimation of the second term could lead to incorrect absolute
flux scale. The advantage of this method is that, in principle, when focus and pointing
is well controlled, the antenna gain can be computed from the antenna characteristics
(geometry, illumination, surface error). This prediction should be accurate enough at
least at mm wavelengths, but perhaps not at submm wavelengths.

The effectiveness of “ab-inito” absolute calibration at high frequencies should be
compared with that of the more classical “a posteriori” calibration.

Spectral Line case The above discussion on amplitude calibration was valid for con-
tinuum sources only. For spectral lines, the receiver sideband gain ratio becomes a
dominant problem in the determination of the absolute flux scale. We have seen that
this is a serious issue at submm wavelengths.

An hybrid approach In either scheme, receiver and atmospheric calibration is the
critical issue. If this calibration step is unbiased, the averaging effect over the 64 antennas
would probably allow to use the mean “ab-initio” flux determined from known antenna
gains as an absolute measurement. Detailed studies of the biases of the atmospheric
calibration step should thus be performed.

The only difference between the two approaches is the need, in the “a-posteriori”
approach, to observe at the observing frequency a nearby quasar for (relative) flux cali-
bration, and to bootstrap the flux of this amplitude calibrator to that of an “absolute”
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calibrator. The later stage could potentially be omitted if one is confident in the lack of
bias of the atmospheric calibration step.

Note that in the “a-posteriori” approach, the observation of amplitude calibrator
can at very little cost be complemented by observations of the same calibrator at the
calibration frequency, to measure the relative delay and phase between both receivers.

11.2 Absolute Flux Scale

While image quality depends on the relative calibration of the various antennas, which
in turn is affected by the antenna based sensitivity, absolute flux calibration will
depend on the total array sensitivity if standard “candles” are used.

In this respect, the huge (continuum) sensitivity of ALMA will be an asset to allow
using so-called “absolute” calibrators as a flux scale reference. Rather than being con-
fined to sources above 1 Jy or so like currently mm arrays, ALMA will be able to go
down to much fainter sources, since the point source sensitivity is

σp =
σb√

N(N − 1)/2
' 2.0− 3.5mJy

(
Tsys

100 K

) √
1 GHz

∆ν

1 sec

t
(50)

where the higher value accounts for the reduced antenna efficiency at submm wave-
lengths. Typical values are tabulated in Table 6. To reach the 1 % accuracy level,
sources of order 10 mJy would be appropriate as primary amplitude calibrators in the
mm range (ν < 250 GHz), while sources of order 25-100 mJy would be required in the
submm range (ν > 350 GHz).

11.3 Integration time

The integration time necessary to reach this accuracy as function of the calibration source
flux (Table 2 summarize the flux of sources described in Section 3) and ALMA sensitivity
(Table 6) is given by :

tp =

(
100

Γ
× σp

Sν

)2

(51)

tp is the point source integration time in second, Γ is the required accuracy (in percent),
σp is the ALMA point source sensitivity with the full bandwidth (8 GHz) and Sν is the
source flux. The results of these computations at several frequencies are shown in Table
7.

For the secondary calibrators sources (e.g quasars) the required integration times can
be extremely different. The strongest quasars used for RF bandpass calibration (called
Qband in Table 2) require very little time (t ¿ 1 s). In the “a posteriori” method,
amplitude calibration during the observing run is done with a quasar near the target
source (quasars called Q2,Q4,Q7 in Table 2). The elevation tolerance related to the
opacity uncertainty allows the use of any of these quasars at mm wavelengths. The flux
of these quasars can be measured very quickly (at most a few seconds). At sub-mm
wavelengths, only Q2 and Q4 are acceptable for Γ = 1% accuracy, Q7 is acceptable for
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Table 7: Integration time (in seconds), for several frequencies and calibrators, needed
with ALMA to achieve a relative flux precision Γ = 1.0%. Computations were done
based on Tables 2 and 6, and assume unresolved sources.

ν Qband Q2 Q4 Q7 Star Ast Sat
(GHz)

43. < 0.01 .04 .002 .000 92000 284.0 .180
90. < 0.01 .19 .007 .001 10000 32.0 .020

230. < 0.01 3.1 .120 .014 1600 4.8 .003
350. .01 16 .650 .070 1000 3.1 .002
410. .01 47 1.900 .210 1300 4.1 .003
690. .19 950 38.000 4.200 2000 6.1 .004
850. .36 2000 79.000 8.800 1500 4.5 .003

Γ = 3%, and the integration time to measured the flux with sufficient precision goes up
to 1 minute.

Stars are too weak to be usable in any reasonable time (t > 20 min), unless the
accuracy is relaxed to 3 %. Asteroids would be fast to observe, but are poor absolute
calibrators. Giant planet satellites provide the best compromise, with less than 1 second
of integration time at any observing frequency to reach the required accuracy. Conse-
quently, satellites are recommended for absolute flux calibration. However, size effects
should be considered (see Section 11.4), and these satellites may not always be visible.

11.4 Resolved calibrator sources

Table 8: Synthesized beam (in arcsec) for several array configurations and frequencies.
Configurations are from [Conway 2001].

ν sd sc sb sa
(GHz)

43 3.74 1.84 0.81 0.41
90 1.79 0.87 0.39 0.20

230 0.70 0.34 0.15 0.08
350 0.46 0.22 0.10 0.05
410 0.39 0.19 0.08 0.04
690 0.23 0.11 0.05 0.03
850 0.19 0.09 0.04 0.02

Satellites (with size ∼ 1 arcsec) or larger source (planets) can be easily spatially
resolved with ALMA, which means that the observed flux decrease with increasing base-
line. Their use as primary calibrators thus requires a model fitting in the uv plane. Since
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the flux decreases with increasing baseline, all the baselines do not contribute with the
same weight to constrain the total source flux. Using a source model and the actual
layout of the ALMA configurations, we can compute the effective noise on a 1′′ source
from the baseline noise, and derive an “efficiency” as the ratio of the integration times
required to get the same signal to noise on a 1′′ source and on a point source of same
strength :

teff = tp/ε (52)

ε can also be interpreted as the effective fraction of useful baselines. Table 9 gives this
fraction of effective baselines (ε) as function of frequency and array configurations (the
corresponding synthesized beams are indicated in Table 8). We used the configuration
layout from ALMA memo 348 [Conway 2001]. The values allowing to reach a flux accu-
racy of 1% are shown in Table 10. In most cases, the integration time needed is still less
than 1 second. Only at frequencies higher than 690 GHz and with a sa array configura-
tion 10-20 seconds are required. The largest 14 km configuration has not been considered
here. However, Table 9 shows that the effective number of baseline for configuration sa
is only 1 at high frequencies. It is thus sufficient to design the largest configuration with
1 short baseline to provide the same sensitivity.

Table 9: Fraction (ε) of baselines constraining a 1 arcsec source (e.g. satellite) flux
determination, for several array configurations and frequencies. The number of effective
baselines can be obtained by multiplying by 2016.

ν sd sc sb sa
(GHz)

43 0.90 0.88 0.57 0.23
90 0.82 0.63 0.23 0.068

230 0.48 0.21 0.051 0.014
350 0.28 0.10 0.024 0.0063
410 0.22 0.079 0.018 0.0046
690 0.092 0.028 0.0054 0.00055
850 0.063 0.019 0.0032 0.00016

12 Specific Methods

We have studied in the previous sections the different integration times for all calibration
procedures, as function of the ALMA sensitivity, of the required flux accuracy (Γ) and
of the calibrator fluxes. The integration time summary for each calibration step is
presented in Table 11. Based on these integration times at each frequency, we propose
in this section a specific method for each calibration step. Note that at low frequencies
(ν ≤ 410 GHz), all the calibration procedures take less than 1 minute to be performed
and are therefore not problematic. The main difficulty is to calibrate higher frequencies
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Table 10: Integration time (in seconds) needed with ALMA to achieve an absolute
amplitude accuracy of 1.0 % on a giant planet satellite of 1 arcsec angular size, for
several frequencies and array configurations. Computations were done based on Tables
7 and 9

ν sd sc sb sa
(GHz)

43 0.200 0.20 0.31 0.78
90 0.024 0.03 0.09 0.29

230 0.006 0.01 0.06 0.21
350 0.007 0.02 0.08 0.32
410 0.013 0.04 0.17 0.65
690 0.044 0.14 0.74 7.30
850 0.047 0.16 0.94 18.7

(ν ≥ 690 GHz), because lower sensitivity and source fluxes both decrease the signal to
noise compared to the low frequencies case.

12.1 Starting Observations

The first steps before observing is to tune the receiver, measure the sideband ratio, the
delay and the RF bandpass. All these three procedures need to be done at the observing
frequency (except the fine bandpass) with the strongest available quasars (called Qband

in Table 2). These quasars are, on average, 100 degrees away and telescopes take ∼ 30
seconds to slew to this position. A pointing and focus (≈ 10 s, see below) is also required
to optimize the signal to noise. One can now start these three first calibration steps.
These starting procedures need altogether less than 1.5 minutes at low frequencies and
between ≈ 4 minutes at higher frequencies. In fact, the most time expensive procedure
at high frequency is the bandpass & sideband ratio measurement. If the subreflector
coherent signal frequency dependence is known accurately enough, this step could be
much faster.

12.2 Pointing and Focus

As indicated in Section 8, a short local pointing model every 30 minutes or so is better
than measuring the pointing on a very nearby source. Focus will need to be measured
every 10 to 30 minutes, depending on observing frequency, and on the success of a priori
prediction.

12.3 Amplitude and Phase calibration

Phase calibration can be done either with fast switching, or using the WVR. In all cases,
the integration time on the calibrator is not the limiting factor: residual atmospheric
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Table 11: Integration times needed to reach Γ % Amplitude accuracy, 0.4′′ Pointing
accuracy, and the specified phase accuracy. The system frequency for each calibration
step (FCal) is either νCal (94 GHz) or the observing frequency νObs. Phase is computed
with S100=0.1 Jy source (Q2 2 degrees away source), and with S100=0.5 Jy source (Q4

4 degrees away source), Pointing, Focus and Amplitude (baseline and total) use a Q4

source, while Bandpass uses a S100=10 Jy source (Qband). At νObs ≤ 350 GHz receivers
are in SSB (10 dB), and at νObs ≥ 410 GHz in DSB. Frequencies and bandwidths are in
GHz, integration times in seconds.

νObs (GHz) 90 230 350 410 690 850 Precision
Pwv (mm) 2.3 2.3 1.2 0.5 0.5 0.5 Goal &

Precision Goal Γ = 1 % Γ = 3 % Dependence
Procedure FCal ∆ν

Unique Calibration Steps
Delay νObs 8.0 < 0.03 0.09 1.7 3.4 < 6◦

Sideband ratio νObs 0.250 0.2 2.5 11.7 4.4 87 170 ∝ 1/Γ2

Fine Bandpass (Amp) νCal 0.001 56 56 56 6.2 6.2 5.2 ∝ 1/Γ2

Fine Bandpass (Pha) νCal 0.001 0.75 0.75 0.75 0.75 0.75 0.75 5◦

Large Bandpass (Amp) νObs 0.250 0.20 2.45 11.7 4.4 87 170 ∝ 1/Γ2

Large Bandpass (Pha) νObs 0.250 0.00 0.03 0.15 0.5 10 20 5◦

Flux νObs 8.0 < 0.01 0.01 0.04 0.08 ∝ 1/Γ2

Sum 60 60 70 12 100 190 ∝ 1/Γ2

Repetitive Calibration Steps
Pointing νCal 16.0 ' 60 ' 60 0.4′′

Focus νCal 16.0 ' 8 ' 8 ∝ 1/Γ
Phase (Q2 quasar) νCal 8.0 0.07 0.45 1.0 1.4 4.0 6 10◦

Phase (Q4 quasar) νCal 8.0 < 0.04 < 0.3 10◦

Amplitude (on Q4) νObs 8.0 0.9 11 53 20 390 750 ∝ 1/Γ2

Amplitude (on Q7) νObs 8.0 0.10 1.2 5.9 2.2 44 85 ∝ 1/Γ2

effects will dominate. The relative phase (and delay) of the receiver at the observing and
calibration frequencies should also be measured to guarantee accurate phase calibration.

Atmospheric transmission calibration (and receiver gain calibration) should be per-
formed every 2–3 minutes, and differential opacity correction based on WVR sounding
applied meanwhile. Relative amplitude calibration check is relatively easy at low fre-
quencies, since it can be performed in less than 6 sec. However at high frequencies, this
is no longer the case. We either have to relax the goal, or to rely on the “ab-initio”
absolute calibration, based on pre-determined values of the antenna gain.

12.4 Absolute flux scale determination (Antenna gain measure-
ment)

The simplest way to obtain a good absolute flux calibration, is to observe first a satellite
(see Section 11) and after the amplitude calibration quasar Q4 or Q7. This is a standard
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flux bootstrapping method. However, satellites are not always available, and they may
not be at an elevation compatible with that of Q4/Q7. An ensemble of other secondary
calibrators is thus required. Monitoring of these secondary calibrators should be done
regularly to provide sufficient reference sources. Bandpass calibrators Qband should be
included in this monitoring, since they will always be observed at least once in a given
project. From typical timescales of variations (0.15% per day) this should be done at
least once a week.

A variant is to use the satellite(s) to measure once the antenna gain, and rely later
on the antenna gain to perform the temperature to flux conversion. This may be more
accurate than the flux bootstrapping method, specially at high frequencies. However,
because of limitation of the atmospheric transmission calibration, the expected accuracy
does not exceed 2–3 %. [Pardo et al. 2001] report modeling the atmospheric transmission
to about 1–2 % accuracy in the mm and submm range.

We have not yet addressed the problem of the first absolute antenna gain measure-
ment. While a priori prediction from the laboratory measured receiver radiation pattern
and known surface errors of the antenna may be sufficiently accurate at mm (3–1 mm)
wavelengths, this is more challenging at submm wavelengths. Extrapolation using the
spectral index knowledge from mm to submm wavelengths could be done. Reaching
Γ = 2% at 650 GHz implies a knowledge of the spectral index to within 0.01 if the flux
prediction is to be done from 100 GHz measurements.

Table 12: Typical observing cycle. tint is the integration time per Procedure, in minutes
or seconds. The repeat rate of each procedure is also indicated.

ν < 400 GHz ν > 400 GHz
Accuracy Γ = 1 % Γ = 3 %
Method “a posteriori” “ab initio”
Procedure tint Repeat Rate tint Repeat Rate
Starting observation ∼ 1 min Once ∼ 3 min Once
Flux calibration 1 min Once/Twice 2-10 min Once/Twice
Pointing ∼ 1 min 30–40 min ∼ 1 min 15–30 min
Focus 8 sec 30-90 min 8 sec 10–30 min
Atmospheric calibration 3 sec 2–3 min 3 sec 2–3 min
Amplitude calibration 10 sec 2–3 min 1 min 10–30 min
Phase calibration 1 sec 20 sec 1 sec 5 sec

or with WVR 1 sec 2–3 min 1 sec 20 sec
Source observation 20 sec 20 sec 2-3 sec 5 sec

or with WVR 2 min 2 min 20 sec 20 sec

12.5 Observing cycle

In summary, we propose an observing cycle with two variants: Low and High frequencies.
Integration time and rate of each procedure are indicated in Table 12. We have not
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tried here to optimize the cycle time for the phase calibration, since this depends on the
assumed technique (fast switching or WVR). The time losses associated to this problem
actually dominates over all other calibration times.

13 Conclusions

We have studied in detail the different astronomical sources usable for calibration pur-
pose. While some sources can be used without specific precaution for some purpose (e.g.
pointing and focus in compact configurations), sources suitable for amplitude calibration
need to match several criteria. This study shows that, together with planets as primary
calibrators, satellites are good secondary flux calibrators. Special objects like MWC
349 also have attractive properties and should be investigated. Stars and asteroids
have inadequate properties (either too weak, or too variable or too polarized). No flux
calibrator is yet known with sufficient accuracy. ALMA itself should be able to provide
ab-initio measurements with 1% accuracy in the mm domain. Extrapolation at sub-mm
wavelengths based on spectral index could yield 3 % accuracy. Very special purpose
observations (e.g. simultaneous mm and near IR studies allowing more accurate spectral
index measurements) may be required to improve that accuracy.

We have computed the ALMA integration time needed for all the calibration proce-
dures, as function of the ALMA sensitivity, sources fluxes and required accuracy. The
results of these computations indicate that:

• At high frequencies (ν ≥ 690 GHz), the sideband ratio calibration (and bandpass
calibration) is the longest procedure (∼ 30 minutes for 1 % accuracy, 3 minutes for
3%), unless we can rely on a coherent signal injected at the subreflector.

• The short integration time (a few seconds) needed to measure the focus and point-
ing could allow “ab-initio” flux calibration, in which ALMA relies on prior knowl-
edge of the antenna gains. To what accuracy can this antenna gain be predicted
should be studied.

• The semi-transparent vane calibration system is less susceptible to errors induced
by inaccurate atmospheric modeling than the dual-load system. Besides other
arguments (see Memo 371 [Guilloteau & Moreno 2001]), this is another reason to
favor such a system.

• Relative amplitude calibration at the 1 % level is feasible at mm wavelengths, but
better than about 2–3 % will be difficult to obtain at submm wavelengths. The
dominant problem here is the uncertainty in the atmospheric transmission, but the
sensitivity conspires to limit independent checks using quasars to similar precision.

• Extrapolation of primary calibrator flux based on spectral index knowledge also
results in a ' 3% uncertainty at submm wavelengths. Hence, flux bootstrapping
techniques will also be limited at this level.

The present document clearly indicates several directions which should be further
developed to attempt reaching the highest possible calibration accuracy:
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• Development of the vane calibration system, and in particular detailed study of its
frequency dependence based on a prototype.

• Control of the receiver saturation properties. Saturation is (with sideband gain
ratio) the most critical problem at mm wavelengths, and the driving consideration
for the calibration device. Limiting it as much as possible will improve amplitude
calibration in the mm domain.

• Development of the coherent signal in the subreflector for bandpass calibration.
Note that such a signal could also be used to calibrate the vane transmission.

• Development of an accurate modeling of the antenna gain. Ab-initio prediction of
the antenna gain from holography, beam pattern measurements, and ruze efficiency
estimates would be an extremely valuable contribution to an accurate submillimeter
calibration

• Modeling and measurement of the FIR filter response of the correlator. Accurate
predictions of this behaviour would remove the need for fine bandpass calibration.

• Development of an atmospheric temperature monitoring device, since at submm
wavelengths the calibration mostly depend on Jm.

• and of course, development of atmospheric modeling. Recent results
[Pardo et al. 2001] in this area clearly indicate that the revised goals (1 % at mm
wavelengths, 3% at submm wavelengths) are indeed within reach. A detailed study
of the possible biases would be helpful.
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Jupiter après la chute de la comète SL9.
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