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Abstract

The lack of large scale structure in array maps is the result of the
hole in the center of the visibility plane that arises because the smallest
spacing between antennas is limited to one antenna diameter. Visibility
data may be extracted for a region in the center of the hole from a single
antenna map made with one array antennas. This can be accomplished
by Fourier transforming the map and dividing out the transform of
the gain function to produce the visibility. If a mosaic of pointings
is obtained with the array in its interferometric mode, this data set
allows extrapolation of the visibilities inward from the edge of the
hole. This can be done by a similar procedure in which the same gain
function is divided from the observed visibilities to obtain visibilities
within the edge of the hole. From the overlap, a complete map may
be constructed. Pointing errors spoil this procedure. The e�ect of
the pointing errors is to produce phase and amplitude errors in the
visibilities that increase toward the overlap region from both the origin
and the edge of the hole. This is doubly bad, because the transforms
of the gain functions also tend toward zero in the overlap region and
the data errors are ampli�ed there. For the homogeneous array, the
e�ects of even small errors in pointing are severe. The use of an array
of smaller antennas provides a better overlap in the central hole, and
reduces the e�ects of pointing errors. The smaller the compact array
antennas, the better is the overlap, but more antennas are required and
calibration becomes more di�cult. A reasonable compromise would be
6m, half the 12m diameter diameter and a traditional choice. For the
compact array to contribute a point source sensitivity that matches
that of the more closely spaced 12m antennas, the necessary number of
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small antennas is approximately (12=Dc)�6, where Dc is the diameter
of the compact array antenna. As an example, the compact D array
of the 10 BIMA antennas shows reasonably good overlap with Kogan's
(1998) 12m D array.

1 Introduction

Imaging of �elds larger than the primary beam of the 12m ALMA antenna
will be important for some of the science that is planned for the system.
Whereas this can be accomplished, in principle, with a homogeneous array,
simulations which include modest antenna pointing errors show that the
dynamic range and �delity of the maps are considerably degraded by the
pointing errors (Cornwell, 1998; Holdaway, private comm., Morita, private
comm.). Including a compact array as part of the system will help a great
deal with this problem. The present questions are (1) What is the best
choice of antenna size for the small array? and (2) How many antennas
are needed? The following discussion attempts to provide a frame- work for
answering the questions.

2 E�ect of Pointing Errors on Mosaic Images with

a Homogeneous Array

In principal, imaging of large �elds with a homogeneous array is possible
through the combination of single dish observations with the array ele-
ments and mosaic pointing during interferometric observations with the ar-
ray. However, pointing errors can have a devastating e�ect on the accuracy
of the results (Cornwell, 1988). To understand how these e�ects can be
mitigated through the use of a small compact array, it is useful to consider
how the pointing errors a�ect the visibility data which produce the maps.

The array produces visibility data for all of the uv plane except for the
hole in the center with radius D, the diameter of the array antennas. The
antenna pairs cannot be placed closer than one dish diameter. One or more
of the elements, operating in single antenna mode, can be used to add data
into the hole. The latter data is observed in the image plane, whereas the
array data arrives in the visibility plane. The two are linearly related by the
Fourier transform. The table bellow lists transform pairs which are useful
for the following discussion.
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Fourier Transforms Image plane Visibility plane

sky brightness TB(x; y) V(u,v)
antenna gain g(x,y) G(u,v)

antenna temperature TA(x; y) tA(u; v)

The image plane is x,y and u,v is the visibility plane. TB(x; y) is the
desired image, V(u,v) is its visibility, and TA(x; y) is a map of the source
made with a single antenna.

To get the needed visibility data in the hole, one �rst makes a map of
the source with one or more of the antennas used in single dish mode and
transforms it to visibility data. Second, one obtains data from the array
both interferometrically and, at the same time, making multiple pointings
of the source, adds it to the array data in the appropriate way, and produces
a complete map from the combination.

The single antenna map is TA(x; y). Since this is a convolution of
TB(x; y) with the antenna gain function, TA(x; y)=TB(x; y) � g(x; y), it can
be transformed to tA(u; v)=V(u,v)G(u,v) in the visibility plane. To extract
V(u,v) it is necessary to form e�ectively the fraction

V (u; v) = tA(u; v)=G(u; v); (1)

which works except where where G! 0. Since g(x,y) is typically close to a
Gaussian function, G(u,v) is as well. Let � be the FWHM of the antenna
with a circular beam and �2 = x2 + y2.

g(�) / e�2:76(�=�)2 (2)

Then G(u,v) has a similar form in terms of the radial visibility variable.
� =

p
(u2 + v2)

G(�) / e�3:58�
2�2 (3)

The connection between � and D, the antenna diameter, is the usual di�rac-
tion formula.

� = 1:2�=D (4)

Figure 1 shows the cross-section of the visibility plane near the origin. For

single pointing of the array antennas, visibility is measured only for � �

D=�. A plot of equation(3) in Figure 1 shows that G(�) ! 0 before �
reaches D=�. Thus, visibility data cannot be extracted from the single
antenna observations all the way out to � � D=�.

3



0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 1: Transfer functions for the homogeneous array. The abscissa is
the radial variable in the visibility plane normalized to D=�, where D is the
antenna diameter. The curve on the left is the transform of the antenna
gain function. The curve on the right is the function which weights the
extrapolation of visibility from the array multipointing observations. It is
the same function, except that it is centered at � = D=�.
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Measurement of visibility data within the outer parts of the hole from
the array is obtained by doing multiple pointing (mosaicing) of the array
antennas while they are observing the source (Ekers, and Rots, 1979; Corn-
well, 1988). A transform of this data set made with respect to the mosaic
of pointings (xo; yo) leads to the following formal result for the measured
visibility.

G(uo; vo)V (u� uo; v � vo); (5)

where uo and vo are the variables in the transform from the mosaic point-
ings, xo; yo. The result is that there are measured visibility data o� the
ordinary u,v tracks at distances given by uo; vo, weighted by G(uo; vo). Re-
covering visibilities from equation (5) requires the same kind of division
that is implied by equation (1). Depending on the width of G(u,v), this
data will overlap that which comes from the single dish measurements. For
the homogeneous array, it is the same G(u,v) for both contributions, and
this distribution is shown as another plot of equation (3) centered at the
smallest value of � given by the array, D=�, in Figure 1. The overlap is
now signi�cant and shows why the combination of single dish plus mosaic
array data for the homogeneous array should give an image that is fully
sampled and accurate at the short spacings. Simulations show that it works
for perfect data.

The presence of pointing errors spoils the image formation contributions
of both the single antenna maps and the array visibility observations. It is
useful to consider them separately.

2.1 The Visibility Errors from the Single Antenna

From the single antenna map, visibility data is extracted corresponding
to values of u and v from 0 to � D=�. In this data, the larger values of u
and v correspond to greater separations of pairs of patches on the antenna.
Figure 2 illustrates how phase errors in these visibilities arise if there are
pointing errors. Figure ?? also suggests a way to evaluate the e�ects of the
pointing errors. Begin with the explicit connection between TA(x; y) and its
transform.

TA(x; y) =

Z
1

�1

V (u; v)G(u; v)ei2�(ux+vy)dudv (6)

With pointing errors �x and �y,

TA(x+ �x; y + �y) =

Z
1

�1

V (u; v)[G(u; v)ei2�(u�x+v�y)]ei2�(ux+vy)dudv (7)
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Figure 2: Sketch of an antenna with a pointing error. Lines to two patches
on the re
ector are shown. Visibilities corresponding to this separation, �x,
su�er a phase error of (2�=�)�x��.
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The e�ective transfer function is now

Geff (u; v) = G(u; v)ei2�(u�x+v�y)
� G(�)ei2���� (8)

Geff (u,v) contains phase errors which will distort the Visibility V(u,v) de-
rived from equation (1). The phase errors are greater for larger u and v
for a given pointing error. The use of a radial cut in the uv plane with the
radial variable � =

p
(u2 + v2) simpli�es the discussion.

Consider two limiting cases. In the �rst, the errors change slowly, per-
haps during a snap-shot observation, but are randomly distributed among
the antennas with RMS expectation ��. If the pointing error in the phase
term of equation(8) is replaced by its expectation and � is set equal to sD=�,
where 0 � s � 1, so that s is the radial variable of the hole normalized to
one, then the typical phase error is

�� = 2���� = 2�(sD=�)�� = 2:4�s(��=�) (9)

It is at the half radius, s=1/2, where the visibility data from the single
dish measurements must overlap with those obtained from the array. For
(��=�)=0.1, one tenth beamwidth pointing accuracy, �� = :38(22o) at this
point. For (��=�)=.05, it is 0.19(11

o). These are large errors from small
pointing errors. Perley (1989) notes that a 10o phase error is equivalent to
a visibility amplitude error of 20% in the construction of images.

In the other limiting case, the pointing errors vary rapidly at each an-
tenna during the observations, perhaps due to the wind. In this case, the
phase errors approximately average out to zero. However, there is a loss in
amplitude due to the decorrelation caused by the 
uctuating phase. If the

uctuations are normally distributed,

Expectation[ei�] = e��
2

�
=2 (10)

From the discussion above, with �� now corresponding to rapid 
uctuations,

�2
� = (2:4�s��=�)

2 (11)

and the loss of amplitude is by the following factor.

e�1=2(2:4�s��=�)2 (12)

At the mid radial point, s=1/2, this factor is 0.93 for ��=�=0.1. The func-
tional form of this error factor is a Gaussian just like the basic function G(�)
in equation (3). Including this factor in equation(3) leads to a narrower and
uncertain composite Gaussian. Altogether, the e�ective overlap region is
reduced as well as the visibility data being made uncertain.
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2.2 Visibility Errors from Scanning the Array Antennas(Mosaicing)

Equation (5) above is the result of a transform of the visibility data from
the array with respect to the mosaic of pointings, xo; yo. The e�ect of the
multiple pointings is to provide interferometer visibilities with the set of gain
functions g(x� xo; y� yo). That is, we get a di�erent interferometric image
from each pointing. The e�ect of pointing errors on these observations can
be found starting with the transform of g(x� xo; y � yo).

g(x� xo; y � yo) =
Z
1

�1

G(u; v)ei2�[u(x�xo)+v(y�yo)]dudv (13)

With pointing errors �x and �y in xo and y0 respectively,

g(x�xo��x; y�yo��y) =
Z
1

�1

[G(u; v)e�i2�(u�x+v�y)]ei2�[u(x�xo)+(y�yo)]dudv

(14)
Just as in equation (8) above, the pointing errors in the array give rise to
an erroneous e�ective Geff (u,v) which is G(u,v) with the additional factor
e�i2�(u�x+v�y) . All the relations worked out above apply in this case as well.
Both the phase errors and amplitude errors increase with distance uo and
vo away from the regular uv track. In particular, the data extrapolation
inward from the edge of the hole is more uncertain the farther it is carried.

It is clear how the image �delity and dynamic range are degraded by the
pointing errors for the homogeneous array. Where the two data sets overlap
at the half diameter radius of the hole, they spoil the inter-comparison, so
that the good mutual calibration of the data sets is degraded. In addition,
because the weighting by the gain transfer function at the half radius point
is only � :25 of what it is elsewhere, the errors are multiplied up in the
inversion process.

3 The Important Contribution of the Compact Ar-

ray

The compact array of smaller antennas will ameliorate the problem by pro-
viding visibilities in the outer part of the hole in the central visibility plane.
The most central visibilities will be provided by maps made by a few of the
12m antennas operating in single antenna mode as above. The array should
be chosen for good overlap with the 12m uv coverage. The overlap can be
seen in Figure 3 which, like Figure 1, shows a cross-section of the visibility

8



plane. The function G(u,v) for the 12m dish is shown for the central region.
Also shown are the multiply pointed array G(u,v) functions in the overlap
regions for 4m, 6m, 8m, and 12m antennas. Pointing of the smaller antennas
may be better enough that the errors of the 12m will dominate. It is clear
that the smaller the antenna in the compact array the better is the overlap
and the smaller will be the e�ect of the 12m pointing errors. Current expe-
rience is that if the smaller dishes are 1/2 the diameter of the single dish or
smaller, good images are possible. The best results that have been obtained
are with the Compact AT and the Parkes telescope operating at the HI line.
In this latter case, the ratio of dish diameters is about 3. This would argue
in favor of using 4m antennas. The di�culty with this choice is both in the
phase calibration and the number of antennas needed for good signal/noise.
The 8m antennas will be easier to calibrate but o�er poorer overlap in the
uv plane. The better overlap of the 6m antenna argues that it may be the
best compromise. It may also have smaller fractional pointing errors than
the 8m, and that is another advantage.

4 The number of Antennas in the Compact Array

The compact array uv coverage must overlap with that of the inner
part of the 12m array and provide adequate sensitivity for the particular
part of the uv plane that it occupies. For example, for a 6m array, this
part is approximately the annulus that extends from 6m to the 12m inner
boundary of the 12m array uv coverage. One approach is to require that
the point source sensitivity of the compact array be the same as that of an
equal area annulus at the inner edge of the 12m coverage. An example of a
compact 12m array uv coverage is that of Kogan's optimum D array (Kogan,
1998) reproduced here as Figure 4. This �gure shows both the antenna
locations (diamonds) and snap-shot uv points. The number of uv points
in the 12m inner edge annulus is about 46 and corresponds to 23 spacings
(after correcting for the Hermitian doubling) which is the work of 6.7 12m
antennas. The array of smaller antennas should have the same point source
sensitivity in its coverage of the inner annulus. For comparison of antenna
sensitivity, the important point is that both the small and large antenna
arrays are operating in multiple pointing mode here. In the mapping, by
multiple pointing, of a given region in a set amount of time the relative
sensitivity to any point source in the �eld is proportional to the antenna
diameter, not antenna diameter squared as it is for the single pointing case

9



0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 3: This is the same as Figure 1, except that more curves have been
added. In addition to the weighting function for the extrapolation of array
visibility data from the 12m antenna, there are weighting function curves
for compact arrays of 8m, 6m, and 4m antennas. The curves are shown in
that order from right to left. The smaller the array antenna relative to the
single antenna, the better the overlap with the visibilities measured with the
single antenna.
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Figure 4: The snapshot uv coverage for Kogan's D array.
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(Sargent and Welch, 1993). The number of compact array antennas should
be � (12=Dc) � 6, where Dc is the diameter of the compact array. Thus,
for 6m antennas, 12 - 13 seem to be required. For 4m, the number would
be closer to 20, and for 8m 9 or 10 would be required. In fact, requiring the
same point source sensitivity may be too strong, since the typical visibility
function of a complex �eld is small over most of the uv plane and grows
rapidly near the origin of the uv plane. A smaller number for the inner
region may give the same signal/noise. Thus, a su�cient number might
be, for example, 10 at 6m for the compact array, for good signal/noise in a
complex �eld.

5 A Straw-person Compact Array, The BIMA D-

Array

The compact array of the previous paragraph is close enough to the
10 element BIMA D-Array that it may be of use to describe the latter
as a starting point for further discussion. Figure 5 shows the layout of the
BIMA D-Array. The smallest separation is 1.35 times the antenna diameter.
It is a compromise between small spacings and the problem of shadowing.
Foreshortening leads to spacings at one antenna diameter except overhead.
This array works well at the Hat Creek latitude of 41o for declinations above
about -10o, but below that, shadowing makes it rather useless. A similar
problem will occur at the Chilean site for high northern declinations, and it
may require a small set of rails for recon�guration for extreme declinations.
On the other hand, the ALMA 12m D-Array may work with fewer antennas
that are shadowed for the extreme declinations, getting the short spacings
by baseline foreshortening. Figure 6 shows the BIMA D-Array uv coverage
for a snap-shot. There are 90 uv points, most of them within a radius of 5.4
k�, corresponding to 16.2m radius for the hole in the uv plane. This number
is roughly twice the number of 12m visibility points in the 12m annulus as
required for comparable point source sensitivity. 16.2m is 1.35�12m, which
is a plausible minimum separation for the 12m antennas to avoid shadowing.
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Figure 5: The 10 element BIMA D Array. The antenna locations on are a
grid measured in feet (nsec).

13



Figure 6: A snapshot set of visibilities for the BIMA D Array at a declination
of 30o. In this plot, 5:4k� corresponds to a spacing of 16.2m, which would
be the spacing of 12m antennas at a separation of 1.35. Including multiple
pointings in the snapshot, the integration time for 6m antennas is 4 times
longer than it is for the 12m antennas.
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