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Abstract

Fluctuating amounts of water vapor over an antenna in an interferometer add phase shifts

to the instrument, shifting the fringe pattern on the sky to decrease signal correlation. Op-

tically thin line radiation from the same water vapor that causes the decorrelation can be

accurately measured, however, allowing an estimate of the column of water above individual

antennas. Knowledge of the water column allows an equivalent but opposite phase to be

inserted in the data processing; this is the radio equivalent of adaptive optics. This memo

explores the instrumental requirements for a multi-channel radiometer capable of measur-

ing pathlength di�erences to 35 �m, a goal for interferometry at 1 mm wavelength. An

examination of linear and nonlinear error sources shows that residual ampli�er or detector

nonlinearity is likely to be the most signi�cant instrumental limit for atmospheric phase

correction.

1 Introduction

Variations in tropospheric water vapor introduce electrical pathlength changes through the at-

mosphere. Fluctuating pathlengths decrease signal correlation between elements of millimeter

wave aperture synthesis arrays, degrading their sensitivity to astronomical signals. Increases

in the water column produce not only a longer pathlength, but also stronger water vapor

line emission; an observation of the integrated intensity of water line is a direct measure of

the pathlength. APHID (Atmospheric PHase Inference Device) is a heterodyne spectrometer

(multi-channel radiometer) optimized for precise measurements of the optically thin 22.235 GHz

transition of water vapor. APHID's measurement goal is �=20 for 1 mm wavelength observa-

tions, or 50 �m changes in pathlength. Allowing a factor
p
2 for combination of independent

measurements for two antennas on an interferometric baseline, APHID's measurement accuracy

at any one antenna must be 35 �m rms.

An absolute measurement of the total column of atmospheric water vapor with this precision

is impossible at present, requiring more exact information of the line shape and atmospheric

structure than is known or practically measurable. Di�erential pathlength measurements are
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nearly as useful for correcting millimeter-wave phases, however, and are much less sensitive to

the details of atmospheric lineshapes.

Model calculations indicate that a 35 �m pathlength change corresponds to a 6 � 10�5

fractional change in the water line's integrated intensity [1]{[2] under typical conditions: a

20 K peak line temperature, 80 K receiver temperature, and a 400{4000 MHz spectrometer

bandwidth with the line folded about its center. If APHID is to correct phases by absolute

measurements alone, its measurement accuracy goal is consequently 1 �10�5, a few times better

than the accuracy necessary for typical measurements. Demands on measurement precision

can be reduced with frequent recalibration of the phase relationship to line temperature, which

replace absolute precision measurements with lower accuracy relative and empirically calibrated

measurements.

In either case, the degree of accuracy is considerably higher than is necessary for typical

astronomical radiometry, with the exception of Cosmic Microwave Background instruments.

Astronomical radiometers extract very small signals from large backgrounds, but uncertainties

in the astronomical signal's absolute scaling of several percent are often permissible. In addition,

since APHID uses spectral information to separate the water line from antenna spillover and

atmospheric quasi-continuum components, its demands on spectral �delity are also extremely

high.

The primary purpose of this note is to explore the instrumental requirements for radiometry

with this degree of accuracy. If the system cannot be internally calibrated to this degree, it

is still possible to calibrate against astronomically-derived phases; in this case, results in this

note are useful for determining the range of operating conditions that still allow the necessary

accuracy.

1.1 Precision Radiometry

An ideal radiometer would measure spectra with a perfectly constant conversion factor between

a spectral channel's input noise temperature and its output voltage. In a real radiometer,

even one which is perfectly linear, calibration load temperatures drift, optical standing waves

change the coupling between loads and the radiometer input, power measurements have a

certain accuracy, and the system's gain drifts with small changes in temperature or device bias

conditions. Establishing APHID's sensitivity to these e�ects is the topic of Section 2.

All real radiometers are also nonlinear at some level, with some gain dependence on input

power level, temperature, bias voltage, or other environmental parameters. Although tem-

peratures and voltages can be carefully stabilized, the radiometer itself must be insensitive to

changes in input power, since that must be permitted to vary. Changes in signal power shift the

operating conditions of ampli�ers, detectors, and other components, causing gain saturation at

some level. Saturation causes errors by reducing the measured power below its true value and

by adding spectral distortions. Section 3 explores the e�ects of changing input power level for

a multi-channel radiometer with a nonlinear relationship between its input and output power

levels.

1.2 Signal Combinations

APHID measures the following powers (after conversion from correlator lag voltages) on the

sky, hot load, and cold load:

ss = k(Ts + Trec)BG (1)

sh = k(Th + Trec)BG (2)
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sc = k(Tc + Trec)BG (3)

where k is Boltzmann's constant, B is the channel bandwidth, G is the system's power gain;

and Ts is the power from the sky, Th and Tc are the hot and cold calibration load radiation

temperatures, and Trec is the radiometer's noise temperature referred to its input. Ts, Th, and

Tc are observed and may have additional contributions from, for instance, spillover. All of the

temperature terms and the gains G in equations (1){(3) will be frequency dependent, and G

may have some dependence on input power level.

2 Errors for a Linear Radiometer

Assuming that the system gain is constant with value Gcal during the calibration, and has value

Gobs during observations, solving equations (1){(3) for Ts yields:

Ts =
(gss � sc)Th � (gss � sh)Tc

sh � sc
(4)

for the absolute temperature in a given spectral channel, where the gain ratio g = Gcal=Gobs.

Using equation (4), the di�erence between two sky measurements using the same load calibra-

tion is:

ÆTs � Tsky;1 � Tsky;2 =
Th � Tc

sh � sc
(g1 ss;1 � g2 ss;2) : (5)

Errors in di�erence measurements will depend on errors in power, gain, and temperature. These

enter the conversion factor KÆ = ÆTs=Æss anew at each calibration cycle. Some simpli�cation

is possible when the gain is stable during the measurements, so g1 = g2 � g, but saturation or

other e�ects change the gain between calibration and observations (see sec. 3). In this case,

ÆTs = KÆ(ss;1 � ss;2) ; (6)

with the gain factor

KÆ =
Th � Tc

sh � sc
g : (7)

This expression also gives a good estimate of the di�erence signals' general sensitivity to gain

variation.

2.1 Error Sensitivity

2.1.1 Absolute Measurements

Di�erentiating equation (4) gives the linearized sensitivity to small errors in its component parts.

For errors in Th, the change in Ts normalized to the calibration di�erence, �Tcal = Th � Tc, is:

�Ts

�Tcal
�

1

�Tcal

@Ts

@Th
�Th =

gss � sc

sh � sc

�Th

�Tcal
; (8)

with errors in Tc,
�Ts

�Tcal
�

1

�Tcal

@Ts

@Tc
�Tc = �

gss � sh

sh � sc

�Tc

�Tcal
: (9)

For errors in sh,
�Ts

�Tcal
�

1

�Tcal

@Ts

@sh
�sh = �

(gss � sc)sh

(sh � sc)2
�sh

sh
; (10)
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errors in sc,
�Ts

�Tcal
�

1

�Tcal

@Ts

@sc
�sc =

(gss � sh)sc

(sh � sc)2
�sc

sc
; (11)

and errors in ss,
�Ts

�Tcal
�

1

�Tcal

@Ts

@ss
�ss =

gss

sh � sc

�ss

ss
: (12)

Errors in the normalized gain factor g = Gcal=Gobs enter as:

�Ts

�Tcal
�

1

�Tcal

@Ts

@g
�g =

gss

sh � sc

�g

g
: (13)

2.1.2 Di�erence Measurements

Di�erentiating KÆ and dividing by KÆ (eq. 7) gives the linearized fractional error sensitivity for

di�erential sky measurements:

�KÆ

KÆ

�
1

KÆ

@KÆ

@Th
�Th =

�Th

�Tcal
; (14)

the sensitivity to Tc is the same but has the opposite sign. For errors in sh,

�KÆ

KÆ

�
1

KÆ

@KÆ

@sh
�sh = �

gsh

sh � sc

�sh

sh
; (15)

and for sc,
�KÆ

KÆ

�
1

KÆ

@KÆ

@sc
�sc =

gsc

sh � sc

�sc

sc
: (16)

The sensitivity to gain variations between two observations or an observation and calibration

is:
�KÆ

KÆ

�
1

KÆ

@KÆ

@g
�g =

�g

g
: (17)

2.2 Representative Requirements

2.2.1 Absolute Measurements

In some cases an absolute measurement is required, but one with relaxed accuracy. For instance,

an uncertainty of �Ts = 100 mK may well be adequate for �nding the approximate total

water vapor column. In this case, equations (8){(13) set limits on load and measurement

uncertainties. As a concrete example, take �Ts = 100 mK and APHID's typical operating

conditions of Ts � 100 K, Th � 300 K, and Tc � 80 K. Letting g = 1 and choosing an

(arbitrary) scale factor that produces corresponding powers of ss = 100 W, sh = 300 W,

and sc = 80 W, equations (8){(13) yield individual limits of �Th < 1:1 K, �Tc < 110 mK,

�sh=sh < 3:7 � 10�3, �sc=sc < 1:4 � 10�3, and �ss=ss < 1:0 � 10�3. Fractional temperature

error of a part in 103 requires a fractional gain stability of 1.0 �10�3 for this set of assumptions.
If all of the errors are present and uncorrelated, then this \error budget" for each should be

divided by approximately the square root of the number of independent terms, or
p
6 = 2:45.

For typical integration times, temperature and gain errors dominate, so a factor of 1.5{2 is

more realistic (also see sec. 2.3).

The practical limit on load temperature knowledge is likely to be in the optical path rather

than in the thermometry. Apertures, windows, and other elements have frequency-dependent

transmission and emission from beam truncation and scattering. This can make it diÆcult to

relate measurements of the load's physical temperature to its radiation temperature.
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2.2.2 Di�erence Measurements

Estimates for di�erential measurements follow a similar logic, but now for the conversion factor.

A fractional measurement accuracy of 10�5 requires j�KÆj=KÆ < 10�5. Using the powers and

temperatures from sec. 2.2.1, equations (14){(17) indicate calibration with reproducibility (but

not absolute accuracy) of �Th = �Tc < 2:2 mK, �sh=sh < 7:3 � 10�6, �sc=sc < 2:8 � 10�5,

and �g=g < 10�5.

2.3 Measurement Time

A given fractional power accuracy requirement in the spectrum determines the minimum inte-

gration time � through the radiometer equation,

�s

s
=

1
p
B�

; (18)

where B is the bandwidth of the channel in the spectrum. For �s=s = 5 � 10�6 and B =

3:5 GHz, � = 88 ms, much shorter than the typical integration times. Measurement time

should not limit the measurement accuracy for calibration.

3 Errors for a Nonlinear Radiometer

3.1 Saturation or Gain Compression

Gain saturation (or compression) can be generally modeled by a polynomial in power (vout =

�0 + �1Pin + �2P
2

in
+ � � �) or a number of analytical approximations. A power law �t is very

accurate over the range of input data but has no simple form for investigating the general

properties of saturation. A hyperbolic tangent tanh(s) function is not necessarily exact, but is

a useful and tractable approximation for the saturation behavior of many devices.

Figures 1 and 2 show that a tanh(s) behavior is a very good working approximation to the

saturation law for the Gilbert-cell analog multipliers in the APHID spectrometer and microwave

ampli�ers at low power levels. The tanh(s) compression law is expected theoretically for sim-

ple Gilbert cells [4]{[5], although a variety of e�ects and embedding circuits can change this

characteristic [4]. Figure 1 is laboratory con�rmation that the Gilbert cell devices in APHID

do not have predistortion circuits, and that they follow a clean tanh(s) law. The dashed line in

the �gure shows an ideal linear behavior; the ratio of the linear curve to the measured points

is the gain compression factor.

Devices with feedback will operate linearly over a wider range of low power inputs than a

tanh(s) approximation would indicate, but will saturate in a generally similar way. If the gain

per stage with feedback is not large, as is often the case for microwave ampli�ers, feedback's

e�ect on transistor nonlinearity may not be very large. Figure 2 summarizes measurements

of power saturation with a broadband noise input measurements a typical power ampli�ers

[3]{[7]. A tanh(s) �t works well for modest compression, but then slowly fails as the output

power compression increases, quite possibly because the dominant nature of the nonlinearity

changes from transistor gain to bias constraints. This measurement shows that a tanh(s)

approximation is quite useful for understanding the general e�ects of low-level saturation and

for making quantitative estimates of system performance.
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Figure 1: Compression curve for APHID's multiplier modules at a sample frequency of 1.2 GHz

(points) and a least-square �t with a tanh(s) function. The dashed line is a perfectly linear

response. The �tted value for the saturation factor a is 7.3 mW at the module's input.

Figure 2: Measured gain compression factor with broadband noise (points) and an uncon-

strained plot of a a=si tanh(si=a) function �xed to the point at a compression near 0.5 dB.
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3.1.1 Absolute and di�erential gain and compression

The output signal from a device with a hyperbolic tangent relationship between input and

output signals si and so is

so = GA a tanh

�
si

a

�
; (19)

where GA is an overall linear gain factor and a is the asymptotic saturation value referred to

the input. For si � a, the expansion tanh(x) = x � x3=3 + � � � shows that this expression

properly reduces to the ideal linear case, so = GA si. The absolute gain compression factor fA
is the gain ratio between the compressed and ideal linear systems:

fA =
so(compr)

so(ideal)
=

a

si
tanh

�
si

a

�
(20)

as a function of the ratio of input to saturation values, si and a. The 1 dB compression point

occurs at si=a = 0:905; for 0.5 dB compression, si=a = 0:612.

Essentially all astronomical measurements are di�erences between two signals. Common

di�erences are between on and o� source positions, or hot and cold calibration loads. In some

cases (e.g. switching between on and o� source positions) the di�erence signal is miniscule. The

comparatively large background signal a�ects the radiometer by establishing its average oper-

ating point. In other cases (e.g. passband gain calibration) the signals themselves considerably

shift the operating point between measurements. From equation (20) the ratio of compressed

to ideal di�erence outputs for arbitrary input levels is:

f� =
�so(compr)

�so(ideal)
=

a [tanh (si1=a)� tanh (si2=a)]

si1 � si2
: (21)

For instrument design, when a domain but not the exact operating conditions are known, the

limiting cases of equation (21) are useful. In the large di�erential signal limit, one signal is much

larger than the other, si1 � si2, and the gain compression factor is given by equation (20) with

si = si1. In the small di�erential signal limit, si1 � si2, and the di�erence �si tends to zero

around an average operating point si,

�so �
d

ds

�
GA a tanh

�
s

a

��
si

�si = GA sech
2

�
si

a

�
�si : (22)

Combining this expansion with an ideal linear system's �so = GA�si and the identity

sech2(x) = 1� tanh2(x) yields:

f�;di� = 1� tanh2
�
si

a

�
: (23)

Equation (23) is the more stringent limit on the gain compression factor.

It may seem odd that changes in the gain compression factor is larger for small di�erential

signals than for large-scale signal swings. The reason for this is that large-signal case describes

a single signal which retains most of its amplitude, while the small-signal di�erential limit is

very sensitive to the local slope of the curve that describes the saturation.

A direct solution involves examining how saturation changes the gain ratio g as the input

power increases by amount �s from si. The gain ratio in this situation is:

g =
G(si +�s)

G(si)
=

1

1 + y

tanh [x (1 + y)]

tanh (x)
; (24)
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Figure 3: Gain compression factor defect limits versus output level for a device with a tanh(s)

nonlinearity. The solid curve is for small di�erences, the dashed curve is for large signal changes.

Figure 4: Gain compression error from equation (24) as a function of input signal level. Each

curve represents a di�erent gain error.
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where x = si=a and y = �s=si. There is no closed-form solution to the factor y in equation (24);

Figure 4 shows the numerical solution. For a device operating 10 dB below its 1 dB compression

point, for instance, a fractional gain change below 10�5 implies a maximum signal shift of about

27 dB below the input power level, or a 0.2 K shift for a 100 K system temperature.

3.2 Calibration dynamic range

A common calibration problem is minor ampli�er gain saturation during measurements of loads

with temperatures well above the sky temperature. The system gain (passband) derived from

this measurement will be arti�cially low at frequencies where the ampli�er has saturated slightly,

typically at frequencies where the system gain is highest. When applied to measured signals as

a passband correction, these incorrect gains will distort the spectrum, even if the power level

for sky measurements is low enough to avoid saturation.

Calibrating one spectrum by dividing by another will introduce an additional gain error.

Dividing an atmospheric spectrum by a blackbody spectrum measured with a maximum power

at 10 dB below the 1 dB point introduces almost a 1% error in the atmospheric scale. Unlike

uncertainties that come from changing amounts of sky power, however, these error sources are

stable (for the stable load temperatures) and can be removed by an initial calibration, at least

to some degree.

3.3 Direct di�erential gain measurement

It is possible to measure the radiometer's di�erential gain directly by injecting and synchronously

detecting a small amount of modulated noise. The radiometer equation links the length of time

tmod necessary to measure the modulated noise, compared with the time tsky needed to integrate

the sky signal to a given rms �, as:

tmod

tsky
= 2

�
�

p �Tm

�
2

; (25)

where p is the necessary accuracy, �Tm is the amount of modulated noise, and the factor two

accounts for error propagation in the two independent measurements of �Tm. For instance, if

� = 1 mK and �Tm = 2 K, measuring the system gain with a fractional accuracy p = 10�5

requires an integration 5000 times longer than the sky signal integration. The magnitude of

the maximum allowable noise modulation is given by equation (24) (Figure 4).

3.4 Device E�ects

3.4.1 Ampli�ers

Ampli�ers can introduce spectral shape as well as overall gain reduction as they saturate.

Saturation occurs for a given output power level, and spectral distortion and structure arises for

a given input power level at frequencies of maximum gain, with decreasing saturation levels at

frequencies where the gain is lower. Signals outside the ampli�er's nominal passband sometimes

also cause saturation.

Compression is usually measured with a coherent signal, which sets an upper limit for

broadband noise inputs. Broadband noise combines with ampli�er nonlinearity to generate

intermodulation products throughout the band. This causes saturation for a broadband input

signal even when its average power is the same as a coherent source's. Measurement of satura-

tion in the WASP microwave ampli�ers [6]{[7] shows that the ampli�er saturates in the same
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Figure 5: Compression in correlator multipliers for an input signal with a smooth bandpass.

The upper curve in each frame is the input spectrum, the similar curve slightly below is the

spectrum with a tanh(x) compression, and the slightly tilted line below is the di�erence between

the two magni�ed by factors of 5, 10, 50, and 500 in panels with decreasing compression.

way for noise and coherent signals, but with the noise saturation curve shifted to an output

noise power 1.5 dB below the coherent signals'.

To minimize saturation e�ects, the usual rule of thumb for ampli�ers is to operate at a

maximum power level about 10 dB below the 1 dB absolute gain compression point. Figure 3

indicates that operation at this power level causes calibration errors of about 1%, which is

acceptable for many applications if not for APHID. For APHID in the absence of active gain

measurement, values from Figure 3 and the additional 1.5 dB margin for broadband noise

suggests that the signal level should be 22 dB below the coherent signal 1 dB compression

point.

3.4.2 Autocorrelation spectrometers

Autocorrelation spectrometers shift and distort the spectrum as their multipliers saturate. The

e�ect of multiplier saturation is di�erent than ampli�er saturation, which to �rst order simply

scales the entire spectrum. Figure 5 is a MATLAB model result for the WASP 128-lag analog

correlator spectrometer [3], showing the saturation e�ects over a range of compression levels.

Each input spectrum was transformed to the time (lag) domain, multiplied by an a tanh(x=a)

saturation term (equation (19)) with a common saturation factor a determined from the sat-
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uration level and peak value of all lags, and then transformed back into the spectral domain.

Figure 5's panels show these input and output spectra and the di�erence between them.

Compared with the input spectra, the output spectra have both an overall shift in total

power and a roughly cosine shaped structure across the passband (the plots also contain edge

e�ects that are artifacts of smoothing near the band edges). These spectral distortions are

easy to understand qualitatively: the zero time lag, measuring total power, has the highest

amplitude and saturates most strongly. Subsequent lags, containing information on line shape,

have lower amplitudes and saturate less. Since the shape of the distortion depends on the input

level in a nonlinear manner, it changes somewhat with saturation level. The distortion also

changes with input spectrum because the lag voltages are distributed di�erently. In both cases,

synchronous detection of a small modulated noise signal can provide a good channel-by-channel

estimate of each lag's saturation.

3.4.3 Power Detectors

A typical power detector has a simple relationship between between input power Pin and output

voltage vout,

vout = R

�
Pin

Po

��

+ vo� ; (26)

where R is a scaling constant in volts at a reference power level Po. An ideal detector has

� = 1 and vo� = 0; deviations from these are nonlinear errors. The power law coeÆcient �

can be tuned close to unity over a reasonable power range by changing the impedance of the

circuit following the detector. For vo� = 0, a mistuning in the circuit causes a scaling error

of (Pin=Po)
��1, which may be important depending on the necessary accuracy, the value of �,

and the di�erence in power from the reference level. APHID does not depend on precise power

detectors of this sort, but �lter bank or digital correlator spectrometers rely on linear power

detectors.

3.4.4 Analog to Digital Converters

Depending on construction, analog to digital converters (ADCs) can introduce signi�cant non-

linearity. Averaging over many noise samples with rms of at least a least signi�cant bit (LSB)

yields average values with precision better than a LSB, so the important speci�cation is de-

viation from nominal linearity. Successive-approximation or 
ash converters can deviate from

linearity by up to one half least signi�cant bit (LSB), although they are often better for modest

numbers of bits. Charge-balancing converters, for instance dual slope or �{�, are slower but

have substantially better speci�cations on linearity. The manufacturer of APHID's ADCs [8]

speci�es a maximum integral nonlinearity of �0:024% of full scale range for a full-scale sig-

nal. The linearity is better for smaller signals. In APHID's case, ADC linearity enters in the

same way as autocorrelator multiplier linearity, a�ecting the lags with higher signal levels more

strongly than the lags with lower signal levels.

4 Conclusion

Meeting APHID's measurement goal for phase correction by requiring a raw instrumental frac-

tional precision of 10�5 under all conditions will be extremely diÆcult. Measuring an amplitude-

modulated noise signal injected at the radiometer's input seems to be necessary to compensate

for residual ampli�er, spectrometer, and ADC nonlinearity. The time necessary for the mea-

surement may not be short compared with the time over which the entire system drifts, however.
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Temperature measurement resolution of 1 mK is necessary for the calibration black-body loads

but is a secondary problem.

A fractional accuracy of 10�4 is a more reasonable goal, however. Correcting the interferom-

eter maps will still be possible but will require a tight interplay between radiometer calibration

and measurements of the millimeter-wave phases: the \kelvins per radians" at the spectrometer

output will not be a constant, but will need to be empirically recalibrated as the weather or

source altitude change. With a frequent and empirical calibration, very optically thin lines have

no fundamental advantage over lines with moderate depth for phase recovery. The choice of

line will come to tradeo�s between line intensity and the separation of water vapor emission

from continuum and atmospheric quasi-continuum contributions.
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