ALMA Memo 273

FTS Measurements of Eccosorb MF112 at Room Temperature and 5 K from 300 GHz to 2.4 THz

2 September 1999 G.A.Ediss[↓], A.R.Kerr[↓], H.Moseley[♯] and K.P.Stewart[♯]

Measurements have been made of a 19.7 mil thick sample of Emerson and Cumming absorber MF112. The sample was machined from a recently purchased (9/98) rod of 1 inch diameter stock material. Transmittance spectra were taken with the sample at room temperature and cooled to 5 K with a Brucker IFS113V spectrometer. They are given in Figure 1 over the range 300 GHz to 2.4 THz (10-80 wavenumbers). These were normalized with background scans taken with no sample present. In both cases, the sample was physically removed from the beam, in the 5 K case within the sample Dewar, so that instrumental effects of the Dewar windows were also removed.

MMICAD¹ was used to fit the absorption coefficient and refractive index over the range 450-1500 GHz as outside this range the signal-to-noise ratio of the interferogram is too low. The refractive index of the material is determined to be 2.28 (ε_r =5.2) for the room temperature sample. For the 5 K sample the refractive index changes to 2.24 (ε_r =5.0). The power absorption coefficients for both samples determined from the data are given in Figure 2 for the 300 - 2400 GHz range.

As the absorption coefficient, α , is a function of frequency, MMICAD was used to fit it in the range 450-1500 GHz to a polynomial of the form $\alpha = A + Bf + Cf^2 + Df^3$, where f is the frequency in GHz and A, B, C and D are given in the table, and the fits are shown in Figures 3 and 4.

Sample temperature	А	В	С	D
For α in cm ⁻¹				
5 K	0	$2.46*10^{-2}$	$2.12*10^{-5}$	-5.07*10 ⁻⁹
300 K	0	3.94*10 ⁻²	$1.82*10^{-5}$	-4.61*10 ⁻⁹
For α in dB/cm				
5 K	0	0.107	9.2*10 ⁻⁵	$-2.2*10^{-8}$
300 K	0	0.171	7.9*10 ⁻⁵	$-2.0*10^{-8}$

National Radio Astronomy Observatory, Charlottesville, VA 22903
Goddard Space Flight Center, Greenbelt, MD 20771

¹MMICAD is a microwave circuit analysis and optimization program from Optotek Ltd., Kanata, Ontario, Canada.

MF112 Spectra

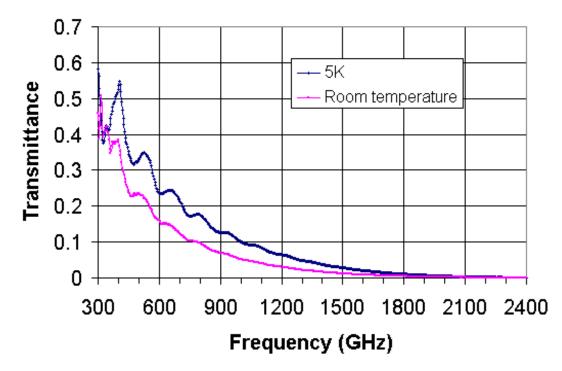


Figure 1

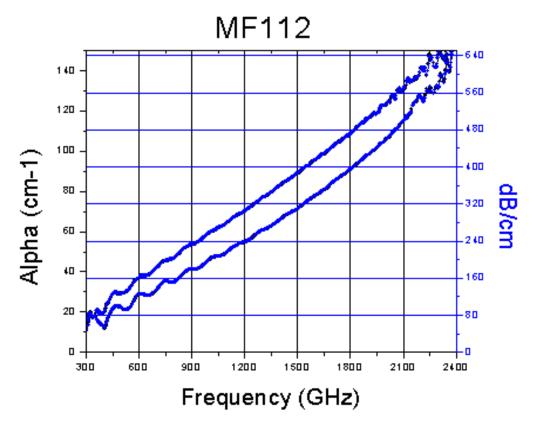


Figure 2 Upper trace 300 K, lower trace 5 K

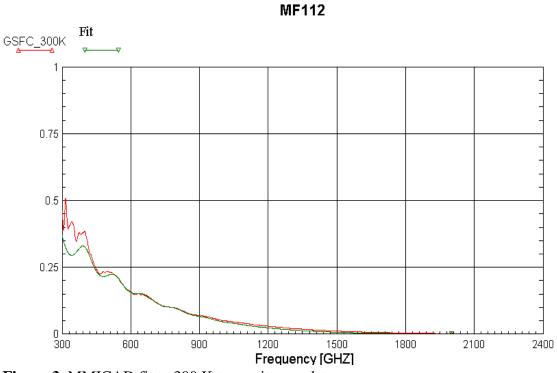


Figure 3 MMICAD fit to 300 K transmittance data.

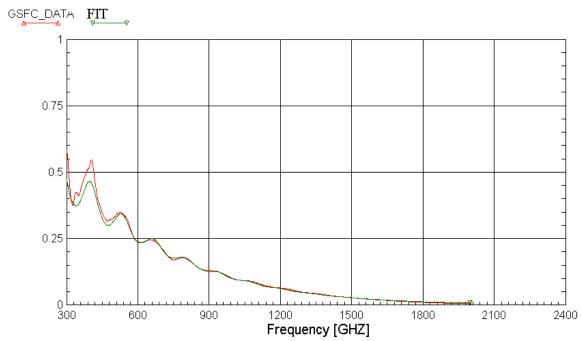


Figure 4 MMICAD fit to 5 K transmittance data