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1 Introduction

Radio interferometers are often used at high frequencies where the pointing errors are no
longer a small fraction of the primary beam. When the observed source is small compared to
the primary beam, the resulting amplitude errors can be removed by self-calibration. However,
if the source size is comparable to the primary beam or larger, pointing errors will produce
errors in the visibilities which do not factor into a single gain term. Until now, the best that
could be done with an interferometer was to perform pointing measurements to “peak up” the
antennas prior to the observing program, or to flag visibilities which contained antennas which
were found to be grossly mispointed.

Since the MMA will be imaging large objects a good deal of the time, a tight pointing
error specification of 1” has been placed on the MMA’s elements. Some people have criticized
this design specification on the grounds that it would be difficult and expensive to obtain 1”
pointing for 40 antennas. Even with 1” rms pointing errors, the MMA mosaic images would
have a dynamic range of less than 1000:1 and a fidelity of less than 20:1 for observations of
bright sources at 230 GHz (Holdaway, 1990). It should be emphasized that similar dynamic
range and image fidelity limitations occur when a large single dish is used to measure total
power instead of the interferometer elements used in the homogeneous array scheme. While
1000:1 dynamic range and 20:1 image fidelity will not compromise the scientific objectives of
the majority of mosaicing projects performed by the MMA, there are experiments, such as the
continuum mosaicing of Cygnus A, which would be compromised. In order to get the most out
of the instrument as designed with 1” pointing errors, new algorithms must be developed to
determine and correct pointing errors. We present here an algorithm which can take corrupted
visibilities and known pointing errors as a function of time and antenna number and invert
them to yield high quality images.

2 Determining Pointing Errors

Generally, the pointing errors of the elements in an interferometric array cannot be determined
to arbitrary precision. Attempts may be made to measure the pointing with hardware or with
observations of pointing calibrators, but the pointing will change with time as the antennas



travel through the pointing model’s phase space and as the antenna structure deforms due
to gravity, thermal effects, and wind loading. If the effects of the pointing errors limit the
quality of the resulting image, it is likely that there is enough signal to determine the pointing
parameters through pointing self-calibration, which has not yet been developed. Pointing self-
calibration requires the evaluation of the partial derivative of each visibility with respect to
the pointing of each element’s pointing position, which requires the computational equivalent

of two direct Fourier sums for each visibility. Pointing self—callbra.tlon may be the subject of a
future MMA Memo.

3 Imaging

For astronomical sources of large angular size, there is no way to correct the visibilities for
mispointing. In other words, the pointing errors do not factor into antenna or baseline gains.
Hence, it will not be possible to use a direct method such as inversion of all of the data
followed by deconvolution. The Maximum Entropy Method (MEM) lends itself to difficult
inverse problems, as it is driven to a solution by the difference between the data visibilities and
the model visibilities. Hence, if it is possible to calculate model visibilities from a model image
and pointing errors for each antenna as a function of time, there is a MEM-based algorithm
which will produce an image.

In the following discussions, I refer to the old mosaic algorithm as standard mosaic, and
the new algorithm presented here as pointing mosaic. Without pointing errors, the gradient of
x? is calculated in the following manner (Cornwell, 1989):

e Initialize Vx? image to zero.

¢ Loop over pointings.

» Apply appropriate primary beam pattern to current estimate of the ME image.
o FF'T beam applied image and degrid to obtain the predicted visibility V.

o Accumulate x? = Y|V — V[2/o2.

e Form residual visibility V — V.

e Grid and FFT residual visibility to image plane.

o Apply primary beam pattern to result.

o Add to Vx? image.

¢ End loop over pointings

o Use Vy? image to change the current ME image to obtain the next iteration ME image.

e Return to step 1 until convergence.



The entropy measure of the current ME image is also involved in determining how to change
the ME image.

In the presence of pointing errors, there is still a Fourier transform relationship between the
sky brightness multiplied by the two antennas’ voltage patterns and each visibility sample, but
because each antenna’s voltage pattern is centered at a different point on the sky, the quantity
being Fourier transformed is different for each antenna:

fﬁ,z(U} = /f(x)El(x — x1,) E5(x — xzz..,)ej;"“'u'x dx, (1)

where x is the sky coordinate, X1, is the pointing center of antenna 1, E; is the voltage pattern
of antenna 1, [(x) is the model brightness distribution, and V; 5 is the model visibility between
antennas 1 and 2. The optimal way to calculate the model visibility from the model image
is by a direct Fourier sum for each individual visibility sample. Hence, the standard mosaic
procedure described above is modified in the following manner:

o Initialize V% image to zero.
¢ Loop over pointings, visibilities one at a time!

o Apply the voltage patterns appropriate to the two antennas and their pointing errors to
current estimate of the ME image (Equation 1).

o Fourier transform to obtain one predicted visibility V.
o Accumulate x2 = S|V - V|2/o?.

e Form residual visibility V — V.

o Fourier transform of one visibility to image plane.

e Multiply result by voltage patterns of the appropriate antennas centered on the appro-
priate pointing positions.

e Add to Vx? image.

e I'nd loop over visibilities, pointings.

e Use Vx? image to change the current ME image to obtain the next iteration ME image.
¢ Return to step 1 until convergence.

In the standard mosaic, all visibilities for a single pointing can be treated at once. Since
the visibilities in the pointing-mosaic case must be treated individually, each visibility sample
behaves as if it were taken from a different pointing center with a unique primary beam.



4 Simulations

To demonstrate the success of mosaicing with known pointing errors, I have performed a few
toy simulations. The simulations are not intended to represent any actual measurements with
existing or planned instruments, but they show clearly that if the pointing errors are known
perfectly, the resulting images will be of the same quality as if there were no pointing errors at
all. Stated more realistically, in the absence of other types of errors, the resulting image will
be limited by the residual pointing errors, or the difference between the true pointing errors
and the alleged pointing errors. '

The toy simulations used a 32 x 32, 5" pixel model image which is derived from the standard
M31 optical HII region image used in previous MMA imaging work. The simulated array
consisted of 7 antennas, each 7.5 m in diameter, arranged in a circle 20 m in diameter. The
shortest spacing was about 8 m, the longest about 20 m. The antennas made total power and
interferometric measurements simultaneously. Nine pointings on the model source were made
with A/2D separation, or 179 at 230 GHz. The total observing time was 1 hour and each
pointing was observed for four integrations of 100 seconds, separated in time to obtain better
(u,v) coverage. Systematic and random pointing errors with an rms value of about 17” (see
Holdaway, 1990 for the pointing error model) were used to generate one dataset, and no pointing
errors were used for a control dataset. The pointing errors as a function of time and antenna
number were recorded in a pointing database attached to the mosaic database. In general,
no two antennas have the same pointing at any given time. Note that these simulations were
particularly severe with pointing errors comparable to the HWHP primary beam. (Since the
(u,v) coverage was not great, I wanted to be sure the effects of the pointing errors dominated
the image.) A large loss of sensitivity would result with such large pointing errors as the
overlap in the voltage patterns of any two antennas would be much less than if the antennas
were correctly pointed. This effect is not seen in the simulations since no thermal noise was
added to the visibilities, and the lower values of the visibilities are correctly accounted for
in the imaging process. The simulated datasets were imaged with both the nonlinear mosaic
algorithm (Cornwell, 1989) and with pointing mosaic.

In the control imaging with no pointing errors, the standard mosaic algorithm and the
pointing mosaic algorithm produced very similar images. The peak image flux divided by the
rms of the difference between the two images was 30000. The cause of this difference is still
being investigated. For all practical purposes, we can say that the pointing mosaic gives the
same answer as standard mosaic. The convolved model image, the sensitivity pattern, and the
control image are shown in Figures 1 through 3

When the dataset with large pointing errors was imaged with the standard mosaic algo-
rithm, the results were quite poor (Figure 4). The best thing that can be said about this image
is that the total flux is within 20% of the correct value. However, when the same corrupted data
are imaged with pointing mosaic and the pointing errors are compensated for in the imaging
process, an excellent image results (Figure 5). This image is different from the image with
no pointing errors because the pointing errors have broadened the sensitivity pattern on the
sky. The pointing-mosaic image is of comparable quality to the standard mosaic image without



pointing errors. More extensive simulations and error analysis will probably be made in the
future.

5 Computing Cost

The pointing mosaic simulations reported above entailed very small image sizes and a very
small number of visibilities, and yet took 44 minutes of CPU time on a Sun Sparcstation
IPX. Since the pointing mosaic program is dominated by the direct Fourier sum, the cost is
independent of the number of pointings, linear with the number of visibilities, and linear with
the number of pixels in the part of the image which is covered by the primary beam. Hence,
we can use the size of our problem to estimate the required CPU time for larger problems. The
number of pixels required for each DFT in an array of maximum baseline B and dish diameter
D will be approximately

Nypiz = 7(2.5Bpaz/ D). (2)

Our simulations were performed with a primary beam model which extended to the second
null, so our simulations would have run a factor of 4 faster if we had modeled the primary
beam only out to the first null, as is often used in reconstruction. From the above arguments,
we see that the time required to perform the pointing mosaic will be about

t = 0.0015Nyi5( Byaz/D)? (3)
in Sparc IPX CPU minutes. We estimate ¢ for a number of instruments:

e For a small millimeter interferometer (5-element) observations in three configurations,
integration times of 30 seconds, and 8 hour tracks (9600 visibilities) with dish diameter
of 10 m and longest baseline of 60 m, we would expect the computing time to be about
8 hours of Sparc IPX CPU time.

e For GMRT observations in the compact configuration (14 elements) with integration times
of 30 seconds and 1 hour tracks (10920 visibilities) with a dish diameter of 45 m and a
maximum spacing of 1200 m, the required Sparc IPX CPU time is about 200 hours. The
algorithm lends itself to parallel machines with powerful processors, so GMRT’s parallel
computers may make this feasible.

o For the MMA operating for only 1 hour with 30 second integrations in its compact
70 m array, the required computing time is 20 hours. Assuming that the speed of the
computer on your desk will double every 18 months until 2001, the target date for full
MMA operations, the required time to image the 1 hour MMA observations with pointing
mosaic will be well under an hour.

e For VLA observations in the D array with 30 second integration time and 1 hour tracks
(42120 visibilities), the required Sparc IPX CPU time is about 1700 hours, which is clearly
not possible. The large time required is due to the large number of resolution elements
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in the VLA’s primary beam. The problem becomes even more intractable for the more
extended configurations of the VLA. However, the VLA stands to gain more through the
possible use of grouped FFTs rather than the direct Fourier sum (see below).

For the time being, the current algorithm may be sufficient for the existing millimeter interfer-
ometers: it is faster than real time observing for continuum, but slower than real time observing
for spectral line. It should be trivial to alter the algorithm such that the full DFT machinery
is used only for certain time ranges strategically placed around sunrise and sunset, visibilities
taken outside these timeranges being processed with an FFT.’

It may be possible to take shortcuts in pointing mosaic. For example, if we had a very
large number of antennas N, and we “quantized” the pointing errors in space and time such
that there were only M values of pointing errors, we would achieve some improvement in the
image quality at some computational cost. FFTs would be performed for the image multiplied
by the voltage pattern centered on pointing ¢ and by the voltage pattern centered on pointing
J, for all possible pairs of 7 and j, resulting in M(M — 1)/2 + M times as many FFTs as
the standard mosaic program. For example, with M = 4, 10 times as many FFTs would be
required. Assuming the dynamic range is inversely proportional to the rms pointing error, as
predicted by Cornwell, Holdaway, and Uson (1992) and as verified in simulations by Holdaway
(1990), assuming four possible values of the pointing error would reduce the rms pointing error
by a factor of about 0.6, increasing the dynamic range by a factor of 1.7. It is clear that
increasing M much beyond 4 will not result in any savings over the DFT approach as the
number of FFTs increases like M2, However, if each pointing error solution is applicable for
several integration times, then each FFT (one for each pair of quantized pointing errors) can
be used for more visibilities, each of which would require a DFT in the exact solution.

Since the terms required in Vx? are similar to the terms required for the partial of x?
with respect to the pointing error, which is required for pointing self-calibration, it should be
possible to implement the pointing error determination inside the imaging program. When
the image begins to suffer from the effects of pointing errors, the image is used as a model
for pointing self-calibration. The image is then used as the starting model for several more
iterations of imaging, until the effects of residual pointing errors are again limiting the image.
Such a scheme would save a lot of computer time over the current approach to deconvolution
and self-calibration in which both programs are run anew each time.



6 Summary

The mosaic algorithm has been extended to properly treat known pointing errors in the imaging
of radio interferometric data. Images produced by the new algorithm should have an error level
dictated by the level of the residual pointing errors (ie, the difference between the true pointing
errors and the pointing errors used in the algorithm). This new algorithm is computationally
expensive, but should be feasible for existing small millimeter wavelength interferometers, for
the GMRT with parallel processing, and for the MMA with expected increases in computer
performance. The algorithm cannot be applied to VLA data any time soon. This algorithm
will also work for single dish data and single pointing interferometer data. The algorithm can
easily be extended fo cope with antennas with different (known) voltage patterns.
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Figure 1: Model brightness distribution used in the simulations, convolved with the synthesized
beam.

Figure 2: Sensitivity on the sky for a 9 pointing mosaic.

Figure 3: Image resulting from mosaicing the error-free data with either the mosaic or the
pointing mosaic algorithms.

Figure 4: Image resulting from the standard mosaic’s attempt to image data with very large
(~HWHM primary beam) pointing errors.

Figure 5: Image resulting from the pointing mosaic algorithm applied to the data with very
large pointing errors.



ARC SEC

Plot file version 1 created 12-AUG-1992 18:45:15
MMA-TEST M31MOD.SMOOTH.1
0 50 100

l | I [ l | |

60 40 20 0 -20 -40 -60
ARC SEC
Center at RA 00 00 0.000 DEC 35 00 0.00
Grey scale flux range= .- 0.0 135.1 JY/BEAM

Peak contour flux = 1.3515E+02 JY/BEAM
Levs = 1.3515E+00 * ( 4.000, 8.000, 16.00,
32.00, 64.00)

‘“ F:f)ure 1 —



Plot file version 1 created 12-AUG-1992 18:44:13
TEST 2.3000E+11 HZ TEST.SENS.1
0 50 100 150

ARC SEC

i | I | | I | |

60 40 20 0 -20 -40 -60 -80
ARC SEC
Center at RA 00 00 0.000 DEC 10 00 0.00
Grey scale flux range= 0.0 183.7 WEIGHT

Peak contour flux = 1.8370E+02 WEIGHT
Levs = 1.8370E+00 * ( 5.000, 10.00, 20.00,
40.00, 80.00)

- Fnj LUre. 2_ -



ARC SEC

Plot file version 1 created 12-AUG-1992 18:45:45
TEST 2.3000E+11 HZ TEST.CVM.1
0 50 100

60 40 20 0 -20 -40 -60 -80
ARC SEC
Center at RA 00 00 0.000 DEC 10 00 0.00
Grey scale flux range= -0.2 110.7 JY/BEAM

Peak contour flux = 1.1073E+02 JY/BEAM
Levs = 1.1073E+00 * ( 4.000, 8.000, 16.00,
32.00, 64.00)

— Fiﬁu"'f. 3 =



ARC SEC

Plot file version 1 created 12-AUG-1992 18:46:04
TEST 2.3000E+11 HZ TEST.CVM.2
0 20 40 60

60 40 20 0 -20 -40 -60 -80
ARC SEC
Center at RA 00 00 0.000 DEC 10 00 0.00
Grey scale flux range= - -1.8 78.1 JY/BEAM

Peak contour flux = 7.8053E+01 JY/BEAM
Levs = 7.8053E-01 * ( 4.000, 8.000, 16.00,
32.00, 64.00)

i F;‘jm 4~



ARC SEC

Plot file version 1 created 12-AUG-1992 18:46:22
TEST 2.3000E+11 HZ TEST.CVM.3
20 40 60

80

100

60 40 20 0 -20
ARC SEC
Center at RA 00 00 0.000 DEC 10 00 0.00
Grey scale flux range= ° 0.3 109.5 JY/BEAM

Peak contour flux = 1.0951E+02 JY/BEAM
Levs = 1.0951E+00 * ( 4.000, 8.000, 16.00,
32.00, 64.00)




