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1 Abstract

We present the results of several simulations which test linear and non-linear
mosaic imaging methods subject to pointing errors, noise, and uncalibrated
antenna gain fluctuations. Simulations are performed with the homogeneous
array, a large single dish, and a hybrid array, and the performance of these
instruments is gauged on the relevant (u,v) spacings. Some main points of
this memo are:

o We have been able to substantially improve the linear mosaicing algo-
rithm. A revised algorithm is found to produce much better images
when care is taken to sample out to regions of zero brightness. For-
merly, it was believed that the computationally inexpensive linear mo-
saic would only be used for very low SNR. The new algorithm results
in dynamic ranges exceeding 500:1 when a guard band of 3 HWHM
is observed around the image, dynamic ranges of about 100:1 with a
guard band of 2 HWHM, and dynamic ranges of about 50:1 with a 1
HWHM guard band.

¢ A more realistic model for pointing errors in an array of antennas is
discussed and applied to simulations.

e Systematic components of the array pointing such as global offsets
and global drifts affect image quality more than the random pointing
components. Systematic pointing errors are also easier to calibrate.

e For bright sources observed at 230GHz, the dynamic range of a mosaic
image will be limited by 1” pointing errors to about 750:1 unless the
pointing errors are calibrated. This limit depends strongly on the
pointing error model. The 1” pointing specification is required by
mosaic to achieve high dynamic range and to accurately measure all
spacings, not just the short spacings. With 2” pointing errors dynamic
ranges of 400:1 are possible.

e With 1” pointing errors, the dynamic range for objects with T} < 40K
will be limited by thermal noise (1 MHz bandwidth, 1 minute per
pointing). Dynamic range in images of brighter objects will be limited
by pointing errors unless pointing calibration is performed.

¢ Images produced from simulated homogeneous array data are com-
pared to images produced from simulated single dish data. Noise and
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pointing errors are added to each. The fidelity of the images on the
relevant spatial frequencies is gauged. On all spacings, but particu-
larly from 0 - 15 meters, the homogeneous array images outperform
the single dish images. This is true even when a more lenient pointing
error model is applied to the single dish observations.

Crude simulations of the residual effects of the atmosphere on cali-
brated data are obtained adding random fluctuations and drifts to the
antenna gains. The imaging capabilities of the homogeneous array are
found to be robust even with very large errors (10-20%).

Good images can be made by obtaining equal signal to noise rather
than equal noise on all spatial frequencies. Hence, total power mea-
surements may take only a few percent of the time of a mosaic obser-
vation.

The MMA is able to image planets quite well, with and without noise
and errors.

There are no imaging problems which we have come across so far that
require a large total power antenna for the measurement of short spac-
ings or for any other technical reason. Our simulations will continue
with an open mind (see Section 8 for planned simulations) searching
for situations in which the homogeneous array fails. There are strong
indications that a large central element is more adversely affected by
the errors we have simulated to date, so it seems unlikely that any fu-
ture problems with the homogeneous array could be solved by adding
a large central element. Considering all simulations to date, the ho-
mogeneous array design is adequate to accomplish the scientific goals
which have motivated the proposed Millimeter Array.



2 Introduction

Some unfamiliar terms are defined in a glossary at the end of this memo.

Much of the science which could be done with a millimeter array stresses
the need for high resolution (1” —.1”), large field of view (several arcminutes
or even degrees), large collecting area for high sensitivity (~ 2000m?), and
good instantaneous imaging capability. While many design features of the
proposed NRAO Millimeter Array are now well specified to meet the scien-
tific requirements (antenna size, configuration size, etc.), the major question
of the necessity of a large central element for imaging has not been fully re-
solved.

2.1 The Homogeneous Array and Hybrid Array Designs

The homogeneous array or HA design calls for ~ 40 antennas of ~ 7.5 meter
diameter, each equipped with total power receivers. The array would alter-
nate between interferometer mode and total power mode. The gap in the
(u,v) plane between the outer limit of the underilluminated 7.5 meter dishes
and the shortest interferometric spacings can be sampled through multiple
pointings spaced at the Nyquist rate. Cornwell (1988) has shown that a joint
deconvolution of the interferometric data from all pointings (mosaicing) can
recover unmeasured spacings within a dish diameter of sampled regions of
the (u,v) plane implicitly via the scheme of Ekers and Rots (1979). Further
simulations (Braun, 1989; and this memo) and observations of the Crab
Nebula (Cornwell, Uson, and Holdaway, 1990) have shown that mosaicing
works well with interferometer data supplemented by same size single dish
total power measurements. Even though three or four different array config-
urations are planned for the MMA, the debate over the necessity of a large
central element takes place in the most compact array configuration as this
is where mosaicing and multiple pointing total power measurements will be
required.

The hybrid array design calls for an array of ~ 40 antennas of ~ 7.5
meter diameter operating in interferometer mode and a 15 meter antenna
(the large element or LE) with a focal plane array of feeds operating in
total power mode. In the smallest configuration, the array would measure
spacings between ~ 10 meters and 70 meters, and the LE would measure
spacings between 0 and ~ 15 meters.
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2.2 (u,v) Sensitivity Distribution of the Homogeneous Array

To put the uncertainty about mosaicing with a HA into perspective, we look
at the sensitivity of the HA to various spatial frequencies. The (u,v) cover-
age for a snapshot in the compact array is shown in Figure 1. With multiple
pointings, the actual snapshot sensitivity in the (u,v) plane to different spa-
tial frequencies is given by the simple (u,v) &overage convolved with the
single dish sensitivity (in interferometer mode), shown in Figure 2. The
“petals” are smoothed out when four of five snapshots are spaced an hour
apart. From this perspective, the HA looks a like a single dish. The compact
configuration has been chosen to give good imaging properties rather than
to match an expected power spectrum in some optimal way. Thus it is de-
signed to give a Gaussian-like naturally weighted synthesized beam (Braun,
1989). Important features of the sensitivity distribution are:

1. The sensitivity distribution behaves much like a Gaussian, reflecting
the underlying distribution of baselines. This results in the desired
Gaaussian-like synthesized beam.

2. In this example, the zero spacing point is overweighted due to 39 an-
tennas all measuring total power, but it is arbitrary and can thus be
chosen to have a more reasonable weight.

3. The dark ring at 10 meters represents an excessive density of 10 meter
spacings in the array.

4. The downturn in sensitivity between the central peak and the 10 meter
ring is due to the lack of ~ 7 meter baselines. The sensitivity in this
gap is about half of the 10 meter sensitivity.

The properties of this array could be improved by some refinement. For
example, the excessive number of 10 meter spacings should be reduced. The
~ 7 meter dip in sensitivity is in some sense an artifact of this excess.
It would also be helped somewhat by projection at lower elevations. This
snapshot, as well as all of the simulations in this report, was made very close
to the zenith, a worst case. The total power measurements can be reweighted
to give a smoother sensitivity distribution. Most of the simulations presented
here are actually asking the question: “What are the effects of various errors
on the ~ 5—8 meter range of spacings, and could the LE do the job better?”
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2.3 Past Simulations

The main question people have with the HA is that it is a novel design: few
arrays have been constructed to measure the total power with the interfer-
ometer elements. Cornwell (1988) has done some theoretical work on the
effects of various errors on imaging with such an array. Braun (1989) began
a campaign of simulations on the imaging properties of the HA subject to
errors caused by truncating the primary beam in reconstruction and point-
ing errors. The image quality was gauged by the image’s dynamic range
and the radially averaged difference between the image’s Fourier transform
and the model brightness distribution, normalized by the model. (The lat-
ter, referred to as the residual visibility curve, will be discussed in depth
below.) It was found that truncating the primary beam close to the first
null limited the dynamic range to 1000:1, indicating that knowledge of the
primary beam to greater distances is not exceedingly important. The effects
of primary beam truncation have not been included in these simulations, as
in most cases the effects of pointing errors and noise will limit the dynamic
range to much less than 1000:1.

As a first step, Braun simulated pointing errors by mispointing the entire
array from the nominal pointing, which requires that all antennas have the
same pointing error at a given time. Simulations were made with the point-
ing errors constant in time and varying randomly in time. A more realistic
pointing error model was needed, and is presented in this memo.

Also, past simulations undersampled the model brightness distribution.
Since the effect of mosaicing is essentially to change the illumination of the
antennas to that of a uniform antenna, to avoid aliasing, adjacent pointings
must be within A/2D of each other, while the simulation program placed
the pointings 1.22)\/2D apart.

2.4 Gauging the Fidelity of the Reconstructed Image

We use three diagnostics of image fidelity in this memo:

1. The dynamic range is the least specific tool for gauging image fidelity.
The dynamic range is taken as the peak of the convolved image (resid-
nals added) divided by the off-source rms.

2. Reconstruction errors in the image plane. The difference image be-
tween the convolved reconstructed image and the model convolved
with the same beam is formed. To view more general defects of the
image, the difference image is convolved with a 15 meter beam.
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3. The most specific and rigorous test of image fidelity is the residual
visibility curve. The full resolution reconstructed image is subtracted
from the model, the difference image is Fourier transformed, the rms of
the resulting 2-D error spectrum is calculated in radial annuli, and the
radial rms is then normalized by the radial rms of the model’s power
spectrum. This curve indicates which Spatial frequencies are being
properly reconstructed. For a perfect reconstruction, this curve will be
zero out to the maximum array spacing and 1.0 for larger spacings (no
information on these spacings). The sparse snapshot coverage on the
longest spacings results in non-zero residual visibilities beyond ~ 50
meters even without errors. The residual visibility curve is a very strict
measure of image fidelity. A point source which is shifted by 2” but is
otherwise perfectly reconstructed results in a residual visibility curve
which increases to 1.0 at 30 meters. The residual visibility curve is not
simply related to the dynamic range or other image plane quantities.
A bump of .1 in the residual visibility curve will not limit the dynamic
range of the image to 10:1 as the errors will probably not be coherent
in the image plane.

2.5 The Nonlinear Mosaic and Linear Mosaic Algorithms

There are actually three mosaicing algorithms with which to image multi-
ple pointing data (Cornwell, 1989). Linear mosaicing performs a weighted
average of the dirty images from each pointing. The resulting mosaiced
dirty image undergoes a linear deconvolution, which works remarkably well
when the source is sampled out to zero brightness and adequately when the
source is normally sampled. Linear mosaic will probably be used for low
SNR imaging. For high dynamic range imaging, where the sidelobes of the
synthesized beam are important, nonlinear mosaicing will be necessary. The
mosaic image is the result of an optimization of a global x? for all pointings
plus some “entropy” for regularization. Furthermore, nonlinear mosaicing
comes in two flavors, maximum entropy and maximum emptiness, the mer-
its of which will be presented later. In the following, mosaic will refer to
one of the nonlinear algorithms unless modified by linear.



Mosaic ' creates two different images referred to here as the full res-
olution and the convolved images. The full resolution image is the image
which results in the optimization of x? (agrees maximally with the data).
The convolved image is formed by convolving the full resolution image and
adding the residuals. They are analogous to the CLEAN component im-
age and the restored image, except that maximum entropy and maximum
emptiness exhibit better performance on the longest spacings than CLEAN,
permitting the full resolution image to be displayed with some amount of
confidence. In the following, the full resolution image is used to judge image
fidelity, but the dynamic range is calculated from the convolved image.

For all simulations in this report except the planet simulations, we de-
rived visibilities from the model brightness distribution shown in Figure 3.
This is a good model to use as it displays complicated structure on a wide
range of scales. Figure 4 shows the radial average of the Fourier transform
of this image. All simulations are at A = 1.3 mm in the compact MMA
configuration with maximum baselines of 70 meters and a filling factor of
about .5 (Braun, 1989).

In the remainder of this report, we will explore the requirements of linear
mosaicing, touch on conventional single dish imaging and apply mosaic and
linear mosaic to single dish imaging, discuss our pointing error model, review
the results of our pointing error and noise simulations, present arguments
for the fraction of time the HA would be used in total power mode, present
the results of the planet simulations, and discuss more simulations planned
for the future.

3 Linear Mosaic

While nonlinear mosaic performs 3 FFT’s per pointing per iteration (10-50
iterations, depending on SNR), the non-iterative linear mosaic performs 2
FFT’s per pointing. The linear deconvolution requires 3 FFT’s. Since the
linear deconvolution requires a guard band of blank sky (see below), the
number of pointings will be greater when imaging with linear mosaic than
when imaging with nonlinear mosaic. Still, linear mosaic is computationally
more economical than nonlinear mosaic.

'The mosaic program is a generalization of the AIPS tasks UTESS and VTESS (Corn-
well, 1985) which deconvolves the sky brightness for interferometric data from multiple
pointing centers. Mosaic is coded in the software system SDE, or Software Development
Environment.



The main requirement of linear mosaic is that a guard band of blank sky
be observed around the object of interest. This guard band can be estimated
from the extent of the image convolved with the antenna’s primary beam.
For the case of our model image, which has a fairly sharp spatial cutoff,
we find that acceptable dynamic ranges are obtained when a 2-3 HWHM
guard band of blank sky is observed around thg source (Figure 5), depend-
ing upon the required dynamic range. Nonlinear mosaic, however, performs
well with a 0-1 HWHM guard band. Figures 6 and 7 show the residual
visibility curves for the HA linear mosaic images with 1, 2, 3 and 4 HWHM
guard bands, a single 1 minute integration on each pointing, and no errors.
The 1 HWHM image is unusable. Note the low residuals in the 5-10 meter
“cap” when a 3-4 HWHM guard band is used. Spatial frequencies above
46 meters are unreliable in all images. The linear mosaic/linear deconvolu-
tion sequence assumes that the point spread function is the same for each
pointing. However, since the pointings will be separated in time, each point-
ing’s PSF will be different, with most of the difference due to long baselines
which change quickly. The array configuration used in these simulations is
three concentric circles of diameter 24, 44, and 68 meters in diameter. The
unreliability of the linear mosaic images beyond 46 meters indicates that no
useful information is coming from the long spacings on the outer ring. It was
thought that observing each pointing several times over a range of hour an-
gles would improve the linear mosaic image as the point spread functions for
each pointing would become more similar and deconvolving by an average
effective point spread function would better approximate reality. However,
a simulation with four integrations on each pointing well separated in time
gave very little improvement.

Figure 8 shows the residual visibility curve for for a linear mosaic image
with a 4 HWHM guard band plus noise appropriate to T = 10K and 1.2”
pointing errors (see Section 4 for a discussion of the pointing error model).
The noise and pointing errors decrease the image fidelity out to 40 meters,
but the fidelity is improved over the errorless case beyond 46 meters. Pre-
sumably this is because the noise and pointing errors help to average down
the long spacing reconstruction errors which were caused by the changing
PSF.

Why not use linear mosaic all of the time? Linear mosaic assumes that
the point spread function is the same for each pointing. When the differ-
ences in the point spread functions at different pointings become important
(for high dynamic range imaging and high spatial frequencies where the
point spread function changes most rapidly), nonlinear mosaicing is required.
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Also, if the sky brightness is inadvertently or intentionally undersampled,
nonlinear mosaic will still produce useful results while linear mosaic will
probably not. For very large objects, observation of the guard band will
account for a small fraction of the total observation (30% for 30 x 30 point-
ings), while for smaller objects (6 x 6 pointings) the observing time will be
doubled. The gain in computational efficiency in imaging at the expense of
observational efficiency will need to be addressed when the MMA becomes
operational.

Harvey Liszt suggested a way around the strict guardband requirement.
The offsource visibilities could be “fudged” by setting them equal to zero
or by deriving them from a low dynamic range image made with a small
guardband.

4 The Pointing Error Model

As noted above, the easily implemented array-constant pointing error model
is not realistic. As a first step towards producing more realistic pointing
error simulations, we allowed each antenna to have independent pointing
errors which could change in time. The simulated visibility is then given
by Viz(u) = [I(x)A1(x — x1,)A3(x — x2,)e?™%dx where Vj 5(u) is the
visibility formed between antennas 1 and 2, I(x) is the model brightness
distribution, A, is the voltage pattern for antenna 1, x;, is the position to
which antenna 1 is actually pointing, and u and x represent the vectors
(u,v) and (z,y). If x1, = xgp and A;(x) = Az(x), the product of the
voltage patterns yields the antenna’s primary beam. If the beam is radially
symmetric, or if polar mount antennas are used, the simulated visibility can
be calculated by an FFT of the model sky brightness tapered by the primary
beam centered at x,. For realistic pointing errors, x;, # X3zp, and the
simulated visibilities must be evaluated by a DFT for maximum efficiency.
As each mosaic in these simulations has 49 pointings, each pointing has
780 visibilities, and the model brightness distribution is 128 x 128 or 256
x 256, the pointing error simulations were quite time consuming. Most of
these simulations were limited to 1 integration time per pointing to reduce
computation.

As a starting point, random pointing errors were used (random meaning
random across the array at each time as well as random in time). This is
actually a “best case” model of pointing errors, as the errors will average
out for adjacent (u,v) points as well as for adjacent pointings in the mo-
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saic scheme. A more realistic model for antenna pointing errors is based on
Altenhoff (1987). This suggests a model for the pointing errors of a single
antenna in which the antenna has some pointing offset ( 1”) which is fixed
on timescales comparable to a mosaic observation, and a drift term of about
0”.5. The drift term is caused by the changing effects of gravity, thermal
loading, and long term changes in wind. A third random component ac-
counts for rapidly changing winds and other sources of error. To extend this
model to an array, each antenna has a random initial pointing error. Thus,
there are four vector terms in the new pointing error model:

1. a global pointing offset for the entire array which is constant in time

(G).

2. an initial pointing offset which is random among all antennas but is
constant in time (I).

3. a drift in pointing throughout the observation which is uniform among
antennas and changes uniformly with time (D).

4. a component which is random among antennas and in time (R).

By “vector” terms, I mean there are components in azimuth and elevation.
The simulations can be somewhat simplified by assuming that some kinds of
errors will not have a preferred direction (such as the random term) setting
the altitude and azimuth rms equal to each other, and others will have
a particular preferred direction (such as the drift) fixing the ratio of the
components of that error term.

Comparing the results of the purely random pointing error simulations
with Braun’s array-constant pointing error simulations indicates that the
random terms are not nearly as damaging as constant offsets. To reduce
the effects of the drift term, MMA observing strategies will probably be
similar to single dish observing strategy: scanning through all pointings
several times to help average out the drift term. The simulation program has
been written to reflect this observational strategy, but the expense of these
simulations has precluded implementing this strategy in the most common
simulations.

In attempting to cover a large part of the pointing error model phase
space, it was found that the resulting images were fairly sensitive to the
global offset and drift values. It is difficult to compare different images made
with widely varying values for the pointing error parameters. To obtain sets
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of images which can be readily compared, even more specific pointing error
models were contrived. Three such models are presented here:

Model1 G=(X,X) D=(X/2,0) I=(X,X) R=(X,X)
Model2 G=(X,X) D=(X,0) I=(X,X) R=(X, X)
Model3 G=(X,X) D=(2X,0) I=(X,X) R=(X,X)

where G, D, I, and R are the global, drift, initial, and random components
of the pointing error. The first value of each pair is the azimuth error, the
second is the elevation error. Images were generally produced for X = .25,
-5, 1.0, 1.5, and 2.0 arcseconds, leading to rms pointing errors ranging from
about .5 to 5 arcseconds.

5 Results of Nonlinear Mosaic Simulations

We present here the results of the bulk of the simulations. We seek to answer
a number of questions:

¢ Does mosaic produce satisfactory images in the presence of noise,
pointing errors, and gain instabilities?

e Which array design, the homogeneous or the hybrid array, does a
better job measuring short spacing information in the presence of noise
and pointing errors?

¢ What is the maximum rms pointing error which will enable the MMA
to carry out its scientific agenda?

o Reconstruction errors in low brightness objects will be dominated by
thermal noise. Images of high brightness objects will be limited by
pointing errors. At what point does the transition take place?

Maximum emptiness mosaicing, maximum entropy mosaicing, and linear
mosaicing with a linear deconvolution were used to image the corrupted
data. Simulated single dish data are gridded and linearly deconvolved.

5.1 Pointing Errors

The three pointing error models described at the end of Section 4 were used
to corrupt several HA data sets. RMS pointing errors ranged from .5” to 5.
Noise equivalent to a peak 7} of 200K with a 1 MHz bandwidth was added
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to the data in addition to the pointing errors. All simulations presented
here where carried out at 230 GHz. The pointing error model with the
drift term equal to half of the global offset is supported by Altenhoff for the
IRAM 30 meter (1987) and Emerson for the NRAO 12 meter (1990, private
communication). Figure 9 shows the dynamic range calculated from the
maximum entropy convolved images, indicating that for a pointing error
of about 1” dynamic ranges of 750:1 should *be possible with no pointing
calibration. Halfing the pointing error requirement will not help too much
(~ 900 : 1), but doubling the pointing error to 2.4” rms cuts the attainable
dynamic by almost half (~ 400 : 1).

We see pointing errors to be the crucial test in which the HA must
surpass a LE on the 5-8 meter range. We will compare the HA with the LE
in this arena, but all other simulations will concentrate on the properties
of the HA rather than comparisons between the HA and the LE. Figure 10
shows the maximum entropy mosaic image formed from data corrupted with
this model (rms pointing error = 1.2”). made from the HA. The difference
between the HA mosaic image and the model is convolved with a 15 meter
beam in Figur:e 11. To address the question of whether a large single dish
can assist the MMA in measuring short spacing information, a 169 pointing
15 meter single dish image was produced by the mosaic program. The single
dish difference image is shown in Figure 12. (The units of these two images
are the same. The peak of the model, appropriately convolved and scaled,
is 13.8 JY/beam.

A more quantitative comparison can be made in the visibility plane (see
Section 2.4 for a discussion). Figure 13 is the normalized radially averaged
residual visibility curve for the HA image with 1.2” pointing errors. As can
be seen, the HA does a sufficient job in reconstructing the visibilities on
spacings out to 60 meters. Figure 14 shows the normalized radially aver-
aged residual visibility curve for the inner 20 meters of the homogeneous
array image and the analogous curve for the LE image. The 5-10 meter
spacings are the most important for comparison, as no one doubts the HA’s
ability to measure spacings < 5 meters or > 10 meters. When interpreting
the single dish residual visibility curve, bear in mind this question: at what
spatial frequency are the single dish results sufficiently corrupted to require
tapering the beam? The single dish contribution to the hybrid array’s resid-
ual visibility curve will be weighted down at larger spatial frequencies by
the falling sensitivity of the single dish. Accounting for this, we see that we
would have to taper the single dish at about 5 meters in order to produce
results comparable to the HA. There are two criticisms of this result: the
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maximum entropy’s convergence is slow for single dish mosaicing, and the
global pointing offset could be calibrated out for the LE, greatly improving
the LE’s performance. Hence, we have performed more 15 meter single dish
simulations with a linear deconvolution and no global pointing offsets. Fig-
ure 15 shows the residual visibility curve for the same pointing error model
with no global offset and one integration per pointing, and Figure 16 shows
the residual visibility curve when the image is fully scanfled 10 times, thereby
reducing the effects of the drift term and the random pointing errors. Even
in this “best case” with no global pointing error and several scans, the single
dish appears to be reliable only out to 8 meters.

The simulations of the HA do not indicate any serious flaws in imaging
capability with respect to pointing errors. As can be seen, the HA does a
sufficient job in reconstructing the visibilities on spacings out to 60 meters.
Especially important, however, is the comparison between the HA and the
single dish between 5 and 10 meters. The HA should outperform the single
dish out to ~ 5 meters because of its greater averaging of pointing errors.
Between 5 and 10 meters where a 15 meter single dish might have been
beneficial the HA does better. It seems reasonable that errors of the same
angular magnitude would affect a single large antenna more than 40 smaller
antennas because there is less averaging and the pointing error is a larger
fraction of the primary beam. It is unlikely that an excellent LE with .3
arcsecond pointing could be produced at a reasonable cost. It is easier to
point an array of antennas than a large single dish.

Any grossly mispointed antennas in an array can be easily spotted and
flagged. The pointing calibration of the central element would have to be
done optically with an accuracy of 1”, while the HA pointing calibration
could be done interferometrically to higher accuracy.

5.2 Noise

To test the robustness of the mosaic algorithms when imaging weak, noisy
sources, a number of simulations have been performed, first without any
other errors to associate any image defects unambiguously with noise, and
then with rms pointing errors of 1.2” specified by the favored pointing error
model from Section 5.1. It was initially assumed that one of the nonlin-
ear mosaicing algorithms which takes account of the different point spread
functions at different times would be used for high to moderate SNR (say
down to 100:1, or about 7, = 5K), and the computationally inexpensive
linear mosaic would be used for noisier sources. As stated previously, when
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the source is oversampled, the revised linear mosaic performs almost as well
as the nonlinear algorithms at normal sampling. The roles of linear and
nonlinear mosaicing will need to be reconsidered as we find out in future
simulations just how far we can push nonlinear mosaicing. However, all
simulations in this section have been imaged with the nonlinear mosaicing
algorithms. .

A bandwidth of 1 MHz was assumed, useful for extragalactic spec-
troscopy. Maximum entropy and maximum emptiness yielded similar re-
sults. The graph in Figure 17 summarizes the results of the maximum en-
tropy mosaic simulations with noise. Peak brightness temperatures ranged
from 0.2K to 100K. The obvious trend in this graph is that dynamic range
increases roughly linearly with the brightness temperature. The long spac-
ings suffer the most from noise due to the lower signal and no redundant
spacings. The mosaic images deteriorate rapidly between 2K and 0.4K.
The image with peak brightness temperature 0.2K shows only the brightest
features, and they are distorted.

In addition‘to noise, the data were also corrupted by 1.2” pointing errors
given by the favored pointing error model. Figure 18 shows the dynamic
range as a function of brightness temperature for HA images made with
maximum entropy mosaicing. As with pointing errors alone, the dominant
error pattern in the image plane is two low brightness plateaus extending
from the source in directions parallel and antiparallel to the average global
pointing offset with shallow holes between the plateaus. These plateaus
gradually become choppy with increasing noise. The level of these plateaus
is roughly proportional to the magnitude of the pointing error; they peak
at 0.2% of the peak for 1.2” pointing errors. The dynamic range is frozen
around 750:1 for brightness temperatures above 40K. This is approximately
the dynamic range achieved with 1.2” pointing errors and no noise. Hence,
for a bandwidth of 1 MHz and 1 minute integrations per pointing, sources
below T; = 40K will be limited by thermal noise.

5.3 Antenna Gain Instabilities

We wish to simulate the effects of the atmosphere on mosaicing without sim-
ulating the atmosphere itself. We have introduced antenna gain fluctuations
to represent the residual effects of a changing atmosphere after calibration.
Gaussian fluctuations are introduce to each antenna gain for each pointing
and a linear drift is introduced to the total power gains only. Figure 19
shows the residual visibility curve for Gaussian gain fluctuations of 7% and
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total power gain drift of 5%. At long spacings, there is essentially no aver-
aging and the error is close to 5%. At short spacings (0-5 meters) the drift
dominates and the total power measurements are off by about 6%. As the
(u,v) distance increases to 6 meters and the interferometer takes over, the
errors decrease to a few percent. It was found that even with fluctuations
of 14% and drifts of 10%, mosaic produced reasonable results.

The key point here is that mosaicing in the compa®t configuration of the
MMA is very robust with respect to a wide range of errors. The compact
configuration has a lot of redundancy (which is not used explicitly) and the
mosaic observation obtains redundant information about adjacent scans.
The amount of redundancy present in MMA mosaic observations may be
overcautious, but considering the atmosphere at even the best sites, such
redundancy will greatly increase the amount of time which the MMA will
make scientificly useful observations.

6 How Much Time Would the Homogeneous Ar-
ray Observe in Total Power Mode?

Critics of the HA claim the LE would be more efficient at measuring short
spacings than the HA operating in total power mode. Their argument rests
on Braun’s reasoning reasoning that the correct ratio of time spent in in-
terferometer mode and in total power mode for a HA observation can be
obtained by matching the (u,v) sensitivity of the total power and the inter-
ferometer measurements. This prescription indicates that total power ob-
servations would require 18% as much as the interferometric observations.
This 18% must be further multiplied by factors for beam switching and the
inefficiency of a single dish relative to an interferometer. These factors will
not be argued in this document.

Braun’s argument results in an image with constant noise at all spatial
frequencies. However, Cornwell (1990, letter to the Radio Panel) argues that
obtaining constant signal to noise is usually desired. Since any object which
requires mosaicing will have more power at shorter spacings, relatively less
time will be required on the total power measurements.

To demonstrate the viability of this assertion, we have performed noisy
mosaic simulations (T = 10K) in which the total power observations were
2% of the time of the interferometric observations. The unnormalized (noise)
and normalized (signal to noise) residual visibilities are shown in Figure 20
The unnormalized curve shows large errors on the shortest spacings, but
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when normalized by the power on those spacings, the errors are no larger
than errors at other spacings.

7 Planet Simulations

Interferometric arrays have a great deal of trouble imaging planets (de Pater,
1990). However, the HA design of the MMA images disks quite adequately.
No single dish planet simulations have been performed.

An object with a sharp brightness cutoff is very difficult to image. We
used a sharp, flat disk of 30 arcsecond radius for a model. Not surprisingly,
maximum entropy mosaicing results in an unusable full resolution image
with on-disk rings at 5% the peak flux. These rings vanish in the convolved
image (3.6” beam), which has an on-disk dispersion of .08% of the disk.
The off-disk rms is .5% of the disk, while the off-disk dispersion is .1% (the
baseline problem mentioned above). The flux in the convolved image begins
to fall off about 2” from the true planet edge due to the convolution.

When the visibilities are tapered by a 2” beam, the situation is much
improved with an on-disk dispersion of .02% and an off-disk dispersion of
03%.

As in the case of single dish observations, one needs to oversample the
planet if order to find the zero level. The model brightness distribution used
in the rest of this memo is a bit larger than the planet model. Undersampling
the former model does not cause a great deal of image degradation. However,
the same sampling of the planet yields an image with a fairly flat disk (.5%
variations) but with large holes (—8%) a few arcseconds from the disk.

Figure 21 shows the convolved maximum entropy mosaic image of a more
complicated model with no errors. Extended features as faint as .2% above
the disk can be seen.

Unlike observations of molecular clouds, the quality of images of plan-
ets will be limited by pointing errors. We assume a 250K disk (not peak)
brightness temperature for the more complicated model and add the usual
1.2 arcsecond rms pointing errors. The maximum entropy mosaic recon-
struction is shown in Figure 22. Maximum entropy does a reasonably good
job.

A trick which has not yet been tried is to fit a featureless disk to a
first try mosaic image, subtract off the disk in the visibility plane, and then
image the residual visibilities with the maximum emptiness algorithm which
permits negative features. This would likely increase the dynamic range,
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reduce the required number of pointings, and eliminate the need to taper
the visibilities or even permit the full resolution image to be displayed, thus
permitting much higher resolution.

8 Future Simulations

LJ
Simulations of the imaging characteristics of the MMA and imaging software
enhancement will continue into the future. We have planned the following
projects:

1. Simulations of atmospheric emission and beam switching. The atmo-
sphere should actually be modeled rather than just the residual effects
of the atmosphere. Unlike the standard methods for deconvolution
of the double beam produced by beam switching, mosaicing is flexi-
ble enough to handle arbitrary beam throws for each antenna at each
time. It is possible that this added flexibility may put 40 small to-
tal power dishes at an advantage over a single large dish in removing
the effects of the atmosphere. The biggest problem here is making a
realistic guess about the power spectrum of the atmosphere.

2. Pointing calibration schemes could be simulated to determine how hard
the ~ 750 : 1 dynamic range limit really is for bright sources.

3. It is clear from Braun’s simulations that knowledge of the primary

. beam will become important for high dynamic range imaging of bright
sources. It is unclear whether the nonradially components of the pri-
mary beam will become important in such cases or if our ignorance
about the radial extent of the beam will overshadow departures from
a radially beam. The mosaic program is currently assumes the pri-
mary beam is rotationally symmetric. A non-rotationally symmetric
beam which rotates on the source can be treated. If each pointing
is observed only once (unlike the single dish strategy), then the cost
of such a treatment is comparable to the rotationally symmetric case.
Otherwise, the computational cost increases an order of magnitude.

4. How far can linear mosaic and a linear deconvolution be pushed up
the dynamic range ladder without relying upon observationally ex-
pensive and seemingly excessive guardbands? Can the guardbands be
“simulated” from incomplete sampling?
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primary beam is considerably less than the image. To be more offi-

cient, the FFT of the whole image tapered by the primary beam can

_be replaced by the FFT of a subsection of the tapered image which
contains the whole primary beam.



9 Glossary

homogeneous array, HA An array of 39 7.5 meter antennas,
each equipped with total power receivers. Hence, total power and
interferometric observations are made with antennas of the same dish
diameter.

large central element, LE  In these simulafions, a 15 meter dish
which is used to measure short spacing information to supplement a
traditional interferometer.

hybrid array A traditional solution to the short spacing problem:
an interferometric array (39 7.5 meter antennas) plus a large central
element (a 15 meter total power antenna).

linear deconvolution  The Fourier transform of an image is di-
vided by the Fourier transform of the beam, and the result is Fourier
transformed back into the image plane.

linear mosaic ‘ A linear mosaic image is formed by adding the
weighted dirty images for each pointing. This will suffice for images
with low dynamic range (50:1). A linear deconvolution can be per-
formed subsequently using a positive effective beam to achieve higher

- dynamic ranges (a few 100:1).

nonlinear mosaic  Nonlinear mosaicing schemes perform a global
minimization of x? formed between the measured visibilities and the
model visibilities generated from the reconstructed image for all point-
ings. To yield a unique solution, some other function of the image is
also optimized. The two forms of nonlinear mosaicing used to date
are maximum entropy mosaicing and maximum emptiness mosaicing.
Nonlinear mosaicing is used for high dynamic range or for imaging

- objects which have not been sampled out to regions of zero brightness.

full resolution image The raw output image of the nonlinear
mosaic program. This image agrees maximally with the true image.
This image is used for comparisons in the visibility plane.

convolved image  The full resolution mosaic image is convolved
and the residuals are added to produce the convovled image. This
image is used for calculating the dynamic range and for comparisons
in the image plane.
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¢ residual visibility curve  Short for normalized radially averaged
residual visibility curve. As implied by the name, the difference of the
Fourier transform of the reconstructed image and the Fourier trans-
form of the model image is radially averaged and normalized by the
radial average of the Fourier transform of the model image. This
shows the fractional error spectrum of the reconstruction. This is a
very stringent test of image fidelity, as a small (sub arcsecond) shift
in an otherwise perfectly reconstructed image will produce a residual
visibility curve which increases linearly.



Figure 1: Snapshot (u,v) coverage in the most compact configuration of the
MMA (72 meters)

Figure 2: Snapshot (u,v) coverage in the compact configuration convolved
with the single element sensitivity.

Figure 3: The model brightness distribution used in most of the work pre-
sented in this memo.

Figure 4: The radial average of the Fourier transform of the model brightness
distribution used in most of the work presented in this memo.

Figure 5: This plot of the image dynamic range as a function of guard band
width indicates that linear mosaic will need 2-3 rows of extra pointings on
blank sky surrounding the source.

Figure 6: Residual visibility curves for images produced from linear mosaic
and a linear deconvolution. Top: Guard band of 1 HWHM. Bottom: Guard
band of 2 HWHM.

Figure 7: Residual visibility curves for images produced from linear mosaic
and a linear deconvolution. Top: Guard band of 3 HWHM. Bottom: Guard
band of 4 HWHM.

Figure 8: Residual visibility curves for images produced from linear mosaic
and a linear deconvolution with Tp = 10K and 1.27 pointing errors.

Figure 9: Dynamic range verses rims pointing error for maximum entropy
convolved images. Pointing errors are generated from the pointing error
model in which the drift is half the global offset.

Figure 10: Maximum entropy mosaic image from the homogeneous array
with 1.2 arcsecond rms pointing errors.

Figure 11: The difference between the HA mosaic image and the model
convolved with a 15 meter beam.
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Figure 12: The difference between the LE mosaic image and the model
convolved with a 15 meter beam.

L
Figure 13: Residual curve for the homogeneous array 1.2 arcsecond pointing
error image.

Figure 14: Comparison of the residual curves for the homogeneous array
image and the single dish image, both at 1.2 arcsecond pointing errors.

Figure 15: Residual visibility curve for 15 meter single dish images formed
with linear deconvolution. The average global pointing error is 0.0, a drift
of -0”.25 in azimuth and a random error of 0”.5 are added. All pointings
are scanned through once.

Figure 16: Residual visibility curve for 15 meter single dish images formed
with linear deconvolution. The average global pointing error is 0.0, a drift
of -0”.25 in azimuth and a random error of 0”.5 are added. All pointings
are scanned through 10 times.

Figure 17: Plot of dynamic range as a function of peak T} with noise for
maximum entropy mosaicing.

Figure 18: Plots of dynamic range as a function of peak 7;. The data
were also corrupted with 1.2” pointing errors. The data were imaged by
maximum entropy mosaicing.
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power gain drift.

mewmmmiqpbtlhrmpmommzﬂof
intuﬁuomtncohervmgtimemdnzlox Top: Unnormalized residual
visibilities (noise). Bottom: Normalised- residual visibilities (SNR).

Figure 21: Mmmeatropymmtmchmof:dnkmthkﬁm,
RO errors.

Figure 22: Maximum entropy mosaic recoastruction of a disk with features;
256K dish brightness temperature amd 1.2 arcsecond pointing errors. -
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