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INTRODUCTION

This memo is one in a series investigating the applications and limitations of
mosaicing, the imaging of objects large with respect to an interferometer primary beam
using multiple pointings, with a particular emphasis on*identifying design constraints
for the proposed MMA. In this case we consider the results of a series of simulations
of noiseless mosaic observations and their subsequent reconstruction. First we con-
sider the quality of reconstruction possible with only limited knowledge of the primary
beam pattern used in the simulated observation. Secondly we explore the quality of
reconstruction possible when the simulated observations suffer from pointing errors.

BAsIic MOSAIC SIMULATION

The basic ingredients of a simulation experiment are a description of the inter-
ferometric array, a model brightness distribution and an observing run specification.
Subsequently, the simulated-data must be reduced in a comparable fashion to data that
was actually observed.

In order to investigate the performance of a MMA in application to very ex-
tended sources it was appropriate to consider a rather compact configuration. The
current strawman concept calls for ~ 40 antennas of ~ 7.5 m diameter commonly op-
erating at 230 GHz. Recent configuration studies (Cornwell, 1988; Hjellming, 1988)
have shown how (pseudo-) randomly filled circular configurations give rise to a uni-
form (2-D) density of sampled baselines out to the maximum baseline observed. In
the continuous limit this corresponds to the recognition that the auto-correlation of a
circle is a disk. The natural synthesized beam of such a configuration is the well known
Jinc function with ~ 10 % near-in sidelobes. Given the freedom to design a natural
synthesized beam, it seems desirable to strive for a functional form which allows easy
image interpretation with a minimum of further processing. While various functions
might be considered for this role, an obvious choice is a Gaussian with its well known
convolution relations. This function also allows trivial inversion of the continuous limit
auto-correlation relation, i.e. a Gaussian distribution of antennas gives rise to a Gaus-
sian distribution of baselines, with a Gaussian synthesized beam. With a finite number
of elements it becomes necessary to take precautions to avoid the grating responses
which arise from redundant spacings, either through local randomizing of antenna lo-
cations or close attention to the 2-D geometry. A reasonably successful configuration
based on this philosophy was designed consisting of three concentric rings at 12, 22 and
34 m radius on which 7, 17 and 15 telescopes were placed at regular intervals as shown
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in Figure 1 and listed in Table 1. The largest deviation of the instantaneous natural
synthesized beams with a Gaussian fit was in the 2 % near-in sidelobes as shown in
Figure 2. The rather tight packing of this configuration results in a 40 % filling factor
towards the zenith, while maintaining < 5 % shadowing losses within 30 degrees of
the zenith. Global and/or north-south scaling could easily be implemented to extend
hour-angle and/or declination coverage with minimal shadowing losses.

A model brightness distribution was obtained from an narrow band H, CCD
image of the large HII region complex in M31, Pellet 550, (Walterbos and Braun, 1989)
by masking out background structure and subtracting off a base level. This model,
illustrated in Figure 3, was chosen for its interesting mix of compact and extended
structures and moderate degree of intrinsic dynamic range of about 300 to 1 (brightest
to faintest structures present). Relative to the flat background the model dynamic
range is of course much higher (about 10°:1).

A simulated mosaic observation was carried out on the model shown in Figure
3 consisting of an 11 by 11 matrix of pointings separated by the antenna’s HWHM of
22”7 at 230 GHz, with two 1 minute integrations per pointing spread between about
-2 and 42 hours of hour angle. Noiseless cross-correlations were formed for all non-
shadowed baselines as were the auto-correlations which were given a weight of 0.4 to
match the geometrical filling factor of the configuration. Together, these resulted in the
synthesized beam per pointing shown in Figure 2 with 3.”5 FWHM. The 121 pointings
were simultaneously deconvolved using the Maximum Entropy Method (MEM), which
converged within 25 iterations to a stable solution. Both the total flux and source
structure were accurately recovered in the post-convolved result at 3.”5 resolution with
a (peak/rms difference) dynamic range of 3000:1. The only notable shortcoming of the
reconstruction was in a poorly defined base level in the outer 1/4 beamwidth of the
mosalc pointing pattern. This underlines the need for restricting analysis of mosaic
reconstructions to only properly sampled regions. The difference was formed between
the smoothed model and the MEM result for the fully sampled central portion of the
model image. The amplitude of the Fourier transform was averaged in annuli and
normalized with the amplitude spectrum of the smoothed model. The normalized
amplitude spectrum of residuals that results is shown in Figure 4. Inside of about 5
dish diameters (D) there is little structure in this spectrum. A minor peak of 0.4 %
amplitude is seen at about 0.7 D, beyond which there is a gradual rise from 3 to 5 D
and a major peak between 8 and 9 D at 7 % amplitude corresponding to the limit of
the measured spacings. Most of the fractional discrepancies are arising at the highest
spatial frequencies. It will be seen that the introduction of various sources of error will
not significantly alter the shape of the residual spectrum but only result in an overall
scaling.

PriMARY BEAM KNOWLEDGE TRUNCATION

The primary beam pattern which has been used to sample (and reconstruct)
the model brightness distribution is the diffraction limited response of a uniformly
illuminated 7.5 m aperture with a 0.75 m central circular blockage. This is meant
to simulate the typical blockage due to a secondary mirror of a (sub-)mm telescope.
Azimuthal assymetries which might arise, for example, from support legs have not yet
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been introduced. The resulting pattern, illustrated in Figure 5, has its first null near
1 FWHM, and a broad 2 % amplitude sidelobe centered near 1.3 FWHM. Since in
practice the knowledge of the primary beam response will inevitably be limited, it is
important to consider the effects of incomplete or inaccurate data for the primary beam
characteristics.

In order to explore the dependance of imaging fidelity on completeness of in-
formation on the primary beam, a series of simulations was carried out. The spatial
scale of the model of Figure 3 was halved so that a 5 by 5 pointing mosaic would allow
complete sampling. The simulated data (four, one minute integrations per pointing
between H.A. = —0.83 and +0.83) was then reconstructed with a series of truncated
primary beam models, which were identical to the sampling beam out to a given ra-
dius, but beyond which they were arbitrarily set to zero. The range of truncation radii
considered was 0.5 to 1.3 FWHM. These reconstructions were then compared with the
“standard” 1.6 FWHM reconstruction. The results of this comparison are shown in Fig-
ure 6a, in which the image peak to rms residual dynamic range is plotted as a function
of truncation radius. The dynamic range of the reconstruction initially rises steadily
with the beam truncation radius, levels out in a plateau near 1 FWHM and then rises
again. This behaviour simply reflects the increasing contribution of the main lobe, the
first null and inclusion of the first sidelobe in the reconstruction. The largest benefit is
gained by knowledge of the main lobe down to the 3—5 % level at radii of 0.85 FWHM.
Further gains come more slowly, and will in practise be more difficult to achieve. The
fractional amplitude spectrum of residuals (as defined in the previous section) is shown
in Figure 7 for the case of a truncation radius at 0.7 FWHM corresponding to a level of
about 12 % on the main lobe. This spectrum is virtually featureless inside of 5 D, with
an amplitude of a few %, after which it rises to almost 40 % at the longest observed
baseline of about 9 D. Spectra for other truncation radii are almost identical, apart
from a simple scaling with the dynamic range plotted in Figure 6a.

Since it may often be the case that only portions of much more extended ob-
jects will be imaged, it is interesting to consider the effect on imaging fidelity of this
circumstance. The model above was “observed” with only a 3 by 3 pointing mosaic
which severely undersamples the region of emission. Reconstructions were then made
for the same range of beam truncation radii as above. The results shown in Figure 6b
show the same trend seen for the fully sampled mosaics above although at only about
one half the previous dynamic range. Fully sampling the region of emission is clearly
desirable but not absolutely necessary.

PoINTING ERRORS

Another potential source of image degradation comes from pointing errors. The
severity of this effect was simulated with two simple approaches. In the first, the fully
sampled 5 by 5 pointing mosaic above was given a fixed one dimensional offset for all
the array telescopes with respect to the expected pointing position. Reconstructions
were made for fixed offsets in the range 0.02 to 0.09 FWHM (corresponding to 1 to 4
arcsec with the above parameters). The dynamic range of these reconstructions relative
the unshifted case is plotted in Figure 8a. Fixed offsets of even 0.02 FWHM already
give significant degradation.



In the second approach, each pointing of the mosaic is given a random pointing
offset in each of two dimensions with variances in the range 0.02 to 0.09 FWHM. Once
again, all array telescopes participate in the same pointing offset, although the direction
and amplitude now vary from one pointing to the next. The dynamic range achieved in
these reconstructions is plotted in Figure 8b as a function of the pointing offset variance
in units of the FWHM. As expected, the degradation in this case is significantly more
severe than in the fixed 1-D case above, although the seemingly exponential functional
form is similar. The fractional amplitude residual spectrum for the case of 0.02 FWHM
variance is shown in Figure 9. This is similar to both Figures 7 and 4, although with
larger amplitude and a somewhat earlier onset (at about 4 D) of high spatial frequency
degradation.
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Neither of these approaches is necessarily realistic, since in both cases all anten-
nas are assumed to mispoint in the same sense, while in practice the antennas may be
more likely to have uncorrelated pointing errors. On the other hand, long time scale
(minutes) wind or differential heating induced mispointing may have a similar form.
It is difficult to predict (and more challenging to simulate) how the reconstruction of
uncorrelated pointing errors would differ from the case studied here since there are
at least two competing effects. Consistency among the mosaic pointings is likely to
improve by a factor ~ 4/n for n antennas, while a systematic decorrelation introduced
by the random antenna offsets will lead to a degradation in image fidelity for each
individual pointing,.

SUMMARY

A number of conclusions can be drawn from the current series of studies. Inter-
ferometric array configurations with many elements can be tailored to give a desirable
“natural” beam that requires only a minimum of deconvolution and allows straightfor-
ward image interpretation.

Mosaic observations and reconstructions of large fields requiring 100’s of point-
ings on complex objects are feasible with only a single size element over the range of
conditions considered here and very likely in actual circumstances. Reconstruction fi-
delity, as measured by the fractional amplitude residual spectrum, is good over a wide
range of spatial frequencies. Specifically, the crucial transition region from auto- to
cross-correlations at D/2 shows little structure over a wide range of error conditions
as seen in Figures 4, 7 and 9. Incomplete knowledge of the antennas’ primary beam
pattern and pointing errors primarily give rise to a global scaling to higher amplitude
of the residual spectrum with some redistribution of relative errors between high and
intermediate spatial frequencies. The introduction of these error conditions generally
leads to a more nearly uniform residual spectrum.

Dynamic ranges of 1000:1 should be possible in reconstructions for which the
primary beam is known to only the few % level of the main lobe (cf. Figure 6a) although
poorly sampled regions of more extended sources will likely suffer more than a factor 2
further degradation (cf. Figure 6b). This suggests that on-axis antenna designs will be
quite adequate in allowing high fidelity imaging, since the sensitivity to far sidelobes is
relatively small.



Pointing errors of the type and magnitude considered here present a serious
limitation to image reconstruction. Correlated pointing errors, such as might arise
from minute time-scale wind loading or differential heating, with a variance of only
0.02 FWHM (1 arcsec at 230 GHz with 7.5 m antennas) limit the dynamic range to
about 300:1. Such errors should be kept at least a factor of two smaller in order not to
unduly limit performance.

More extensive simulations are clearly needed and are already planned to ex-
plore various other effects; including realistic atmospheric degradation and uncorrelated
pointing errors. However, the current study has already begun to address some of the
important issues in the MMA design, underlining the utility of such an approach.
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FIGURE CAPTIONS

Figure 1. A possible compact configuration for the MMA. Three concentric circles as
12, 22 and 34 m radius on which 7, 17 and 15 telescopes are placed at regular intervals
to approximate a non-redundant Gaussian density distribution of the elements.

Figure 2. A cross-section of the synthesized beam obtained in two minutes integration
with the configuration of Figure 1 operating at 230 GHz with a best-fit Gaussian
“overlaid.

Figure 3. A model brightness distribution used to test the imaging fidelity of the various
simulations described in this document.

Figure 4. The normalized amplitude residual spectrum of an 11 by 11 pointing noiseless
mosaic reconstruction of the model shown in Figure 3. The radial coordinate 1s in units
of 0.277 D, so that the markings at 10, 20, 30 and 40 pixels correspond to 2.8, 5.6, 8.3
and 11.1 D.

Figure 5. A cross-section of the primary beam of a uniformly illuminated 7.5 m aperture
with a central 0.75 m circular blockage.

Figure 6. a. Dynamic range (peak/rms residual) of a fully sampled (5 by 5 pointings on
a spatially compressed version of Figure 3) mosaic reconstruction as a function of the
imposed truncation radius of the primary beam model. a. Dynamic range (peak/rms
residual) of a poorly sampled (3 by 3 pointings on a spatially compressed version of
Figure 3) mosaic reconstruction as a function of the imposed truncation radius of the
primary beam model.

Figure 7. The normalized amplitude residual spectrum of a fully sampled 5 by 5 pointing
mosaic reconstruction for which the primary beam model was truncated at 0.7 FWHM.
The radial coordinate is in units of 0.555 D, so that the markings at 5, 10, 15 and 20
pixels correspond to 2.8, 5.6, 8.3 and 11.1 D.

Figure 8. a. Dynamic range (peak/rms residual) of a fully sampled 5 by 5 pointing
mosaic reconstruction as a function of the fixed one dimensional pomtmg offset in-
troduced. b. Dynamic range (peak/rms residual) of a fully sampled 5 by 5 pointing
mosaic reconstruction as a function of the variance of a random pointing offset in two
dimensions between successive pointings in the mosaic.

Figure 9. The normalized amplitude residual spectrum of a fully sampled 5 by 5 pointing
mosaic reconstruction for which random offsets in two dimensions with a variance of
0.02 FWHM were introduced. The radial coordinate is in units of 0.555 D, so that the
markings at 5, 10, 15 and 20 pixels correspond to 2.8, 5.6, 8.3 and 11.1 D.



Table 1
Configuration Coordinates

X Y Z
(m) (m) (m)
-6.81  -1.79 9.72

-3.44 -10.39 4.91
2.51 -11.17 -3.59

6.58 -3.54 -9.39
5.69 6.76 -8.12
0.51 11.97 -0.74
-5.05 8.16 7.21

-12.59 -1.35 17.99
-11.46 -9.20 16.37
-8.78 -15.79 12.55
-4.92 -20.26 7.02
-0.39 -21.99 0.55
4.19 -20.75 -5.99
8.21 -16.71 -11.73
11.12 -10.41 -15.88
12.52 -2.70 -17.88
12.24 5.37 -17.48
10.30 12.71 -14.71
6.97 18.34 -9.95
2.70 21.49 -3.86
-1.94 21.74 2.76
-6.31 19.05 9.01
-9.83 13.79 14.04
-12.02 6.67 17.17
-19.21 -5.90 27.43
-16.17 -19.01 23.09
-10.33 -22.83 14.76
-2.71 -33.67 3.88
5.38 -32.68 -7.68
12.54 -26.05 -17.90
17.53 -14.90 -25.03
19.49 -1.19 -27.83
18.08 12.74 -25.82
13.55 24.46 -19.35
6.67 31.95 -9.53
-1.36 33.92 1.94
-9.16 30.02 13.08
-15.37 20.93 21.95
-18.92 8.23 27.02
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Dynamic Range of Fully Sampled Mosaic vs. Fixed Pointing Offset
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